Von Nichtkommutativen Geometrien,
ihren Symmetrien
und etwas Hochenergiephysik

Dissertation
zur Erlangung des Grades
“Doktor
der Naturwissenschaften”
am Fachbereich Physik
der Johannes Gutenberg-Universität
in Mainz

Mario Paschke
geb. in Trier

Mainz, 2001
Dekan: Prof. Dr. H. Backe

Datum der mündlichen Prüfung: 31.08.2001
manche meinen
lechts und rinks
kann man nicht
velwechsern
werch ein illtum!

 Ernst Jandl
Inhaltsverzeichnis

1 Einleitung 7
 1.1 Das Wörterbuch der Nichtkommutativen Geometrie 10
 1.2 Die nichtkommutative Beschreibung des Standardmodells 22
 1.3 Über den Aufbau der Arbeit 28

I Die spektrale Sphäre 33

2 Von der lokalen zur globalen Beschreibung der Sphäre 37
 2.1 Die C^*-Algebren $C(S^1)$ und $C(S^2)$ 37
 2.2 Die K-Theorie der Algebra $C(S^2)$ 45
 2.3 Das reelle Spinbündel 53
 2.4 G-homogene Bündel 58

3 Die spektrale Beschreibung 65
 3.1 Kovariante Darstellungen von $C(S^2)$ 65
 3.2 J und das Tomita-Takesaki-Theorem 72
 3.3 γ und der Dirac-Operator 76
 3.4 Poincaré-Dualität und abschließende Bemerkungen 79

II Symmetrien spektraler Tripel 83

4 Der Nichtkommutative Torus und seine Symmetrien 89

5 H-symmetrische spektrale Tripel 95
 5.1 Kompakte Quantengruppen 96
 5.2 H-symmetrische spektrale Tripel 110
 5.3 But... .. 112
 5.4 Erweiterungen des nichtkommutativen Torus 127

III Diskrete spektrale Tripel 133

6 Die Klassifikation endlicher Geometrien 139
 6.1 Spektrale Tripel für komplexe Algebren 139
 6.2 Reelle Matrix-Algebren 145
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Differentialalgebra, Metrik und all das</td>
<td>147</td>
</tr>
<tr>
<td>6.4</td>
<td>Der letzte Schritt</td>
<td>155</td>
</tr>
<tr>
<td>6.5</td>
<td>Die endliche Geometrie des Standardmodells</td>
<td>163</td>
</tr>
<tr>
<td>7</td>
<td>Symmetrien und Ko-...</td>
<td>171</td>
</tr>
<tr>
<td>7.1</td>
<td>Endliche Gruppen und ihre bikovarianten Differentialkalküle</td>
<td>174</td>
</tr>
<tr>
<td>7.2</td>
<td>Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren</td>
<td>187</td>
</tr>
<tr>
<td>IV</td>
<td>Ausblick</td>
<td>203</td>
</tr>
<tr>
<td>8</td>
<td>Un´ wozu denn nu´ det janze ?</td>
<td>205</td>
</tr>
<tr>
<td>8.1</td>
<td>Das Spin-Statistik-Theorem aus einem nichtkommutativen Blickwinkel</td>
<td>205</td>
</tr>
<tr>
<td>8.2</td>
<td>Spektrale Quadrupel oder: Die Zeit wird es richten</td>
<td>213</td>
</tr>
<tr>
<td>9</td>
<td>Diskretes Trommeln</td>
<td>225</td>
</tr>
<tr>
<td>9.1</td>
<td>Das invariante Maß und die Rolle der Algebra</td>
<td>227</td>
</tr>
<tr>
<td>9.2</td>
<td>Ein, zwei Quantenpunkte</td>
<td>231</td>
</tr>
<tr>
<td>9.3</td>
<td>Das Maß aller Matrizen</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Danksagung</td>
<td>259</td>
</tr>
</tbody>
</table>
Kapitel 1

Einleitung

Die Gewalt einer Sprache besteht nicht darin, das Fremde auszugrenzen, sondern darin, dass man sie versteht.

Alexander von Humboldt

Manchmal fehlen einem einfach die Worte – und das nicht nur beim Schreiben einer Einleitung.

Greift man Galileis vielzitierte Metapher von der Mathematik als der Sprache, in der das „Buch der Natur“ geschrieben ist, auf, so kann man sagen, dass auch die Physik gelegentlich vor diesem Problem steht.

Selten geht diese „Sprachlosigkeit“ der Physiker dabei auf eine Unkenntnis der mathematischen Literatur zurück. Vielmehr verliefen bisher die Entwicklungen der Mathematik und der Physik im wesentlichen parallel, wodurch es zwangsläufig immer wieder zu Situationen kommt, in denen die eine Wissenschaft der jeweils anderen einen Schritt voraussetzt, und diese dann in ihrem Windschatten hinter sich herzieht.

Demgegenüber fand Einstein das Wörterbuch der Allgemeinen Relativitätstheorie, die Riemannsche Geometrie, bereits fertig vor. Er erkannte lediglich ihre Relevanz für seine physikalischen Überlegungen, womit er zugleich den ersten Grundstein für unser heutiges geometrisches Verständnis aller Wechselwirkungen legte, zu dem später noch einiges gesagt wird. Die allgemeine Relativitätstheorie beschreibt dabei die – dem Standardmodell der elektroschwachen und starken Wechselwirkungen als Bühne dienende – Raumzeit als Lorentzsche Mannigfaltigkeit \((M, g)\), deren metrischer Tensor \(g\) nicht nur die metrische (und die kausale) Struktur dieser Raumzeit, sondern auch das Gravitationsfeld beschreibt. Damit wird \(g\) aber selbst zu einem dynamischen Feld, das bei vorgegebenen Randbedingungen eindeutig durch die Einsteinschen Feldgleichungen bestimmt wird. Weil es auf Lorentzschen Mannigfaltigkeiten keine ausgezeich-
neten Klassen von Koordinatensystemen gibt, fordert man in modernen Formulierungen die Kovarianz dieser Feldgleichungen unter beliebigen lokalen Koordinaten- und Lorentz-Transformationen. Es ist bemerkenswert, dass diese Forderung gemeinsam mit der Kontinuitätsgleichung für den Energie-Impuls-Tensor genügt, um ihre Form eindeutig festzulegen. Bis auf die beiden experimentell zu bestimmenden Parameter (die Gravitations- sowie die kosmologische Konstante) beschreibt Einsteins Theorie also die einzige konsistente Dynamik (mit Bewegungsgleichungen zweiter Ordnung) von Raumzeiten.

Dieser ästhetisch sehr befriedigende Aspekt der Allgemeinen Relativitätstheorie ist aber zugleich die hauptsächliche Ursache für die Schwierigkeiten bei (dem bisher erfolglosen Versuch) ihrer Quantisierung. Die gängigen Formulierungen von Quantenfeldtheorien setzen nämlich stets eine fest vorgegebene Raumzeit voraus, denn es ist (unter anderem) nicht klar, wie man so grundlegende Forderungen an die Theorie wie zum Beispiel:

Messungen in raumartig zueinander liegenden Punkten sollten einander nicht beeinflussen.

formulieren soll, wenn die Metrik selbst (und damit auch die kausale Struktur der Raumzeit) Quantenfluktuationen unterworfen ist. Es stellt sich also das Problem, eine Quantentheorie zu formulieren, ohne dabei eine fest vorgegebene Hintergrundmetrik vorauszusetzen.

Die gesuchte Formulierung sollte dabei natürlich so gewählt sein, dass es möglich ist, die von einem Zustand dieser Theorie beschriebene Raumzeit zu rekonstruieren. Anders ausgedrückt, benötigt man eine genügend grosse Zahl von (explizit bekannten) Observablen des Gravitationsfeldes, also von Funktionalen der Metrik, welche unter allen Diffeomorphismen (Koordinatentransformationen) invariant sind. Es ist aber selbst in der klassischen (nichtquantisierten) Allgemeinen Relativitätstheorie kein solcher, vollständiger Satz von Observablen bekannt.

Darüber hinaus kann aber auch keineswegs behauptet werden, dass eine allgemein akzeptierte Lehrmeinung darüber existiert, wie wechselwirkende Quantenfeldtheorien bei fest vorgegebener Raumzeit auf mathematisch konsistente Weise zu formulieren sind; insbesondere gibt es Hinweise auf mögliche Inkonsistenzen des Standardmodells bei hohen Energien.

Bei diesen Überlegungen wurde allerdings stets vorausgesetzt, dass die Raumzeit auch bei sehr kleinen Abständen die Struktur einer Riemannschen Geometrie aufweist. Nun scheinen aber die empirischen Begriffe, in welchen die räumlichen Maßbestimmungen gegründet sind, der Begriff des festen Körpers und des Lichtstrahls, im Unendlichkleinen ihre Gültigkeit zu verlieren; es ist also sehr wohl denkbar dass die Maßverhältnisse des Raums im Unendlichkleinen den Voraussetzungen dieser Geometrie nicht gemäss sind, und dies würde man in der Tat annehmen müssen, sobald sich dadurch die Erscheinungen auf einfachere Weise erklären liessen.

Es gibt nichts Neues unter der Sonne; der letzte Absatz ist nicht von mir. Er stammt aus B.Riemanns Habilitationsvortrag “Über die Hypothesen, welche der Geometrie zu Grunde liegen.” aus dem Jahr 1854. Riemann führte diese Überlegung zu dem Schluss:
Einleitung

“Es muss also entweder das dem Raum zu Grunde liegende Wirkliche eine diskrete Mannigfaltigkeit bilden, oder der Grund der Maßverhältnisse ausserhalb, in darauf wirkenden bindenden Kräften gesucht werden.”, und er sah damit Einsteins Allgemeine Relativitätstheorie voraus.

Wenn man diese Möglichkeit nicht von vornherein aus den Überlegungen zur Quantengravitation ausschließen möchte, so wird man sicherlich nicht ohne neue mathematische Begriffsbildungen auskommen, wobei aber wahrscheinlich weitaus mehr als nur “ein paar neue Wörter” benötigt werden. Das mögen weitere geliehene, wenn auch viel modernere Zeilen erläutern.

... the modern physical developments have required a mathematics that continually shifts its foundations and gets more abstract. Non-euclidean geometry and non-commutative algebras, which were at one time considered to be purely fictions of the mind and pastimes for logical thinkers, have now been found to be very necessary for the description of general facts of the physical world. It seems likely that this process of increasing abstraction will continue in the future and that advance in physics is to be associated with a continual modification and generalisation of the axioms at the base of the mathematics rather than with a logical development of any one mathematical scheme on a fixed foundation.

The most powerful method of advance that can be suggested at present is to employ all the resources of pure mathematics in attempts to perfect and generalize the mathematical formalism that forms the existing basis of theoretical physics, and after each success in this direction, to try to interpret the new mathematical features in terms of physical entities (by a process like Eddington’s Principle of Identification).

Ganz neu waren diese modern anmutenden Worte, die jeder Arbeit über Nichtkommutative Geometrie gut zu Gesicht stehen würden, aber auch nicht: Sie sind aus der Einleitung zu P.A.M.Diracs berühmter Arbeit über magnetische Monopole aus dem Jahr 1931 entnommen, entstammen also einer Zeit vor der derzeit gültigen Formulierung der Quantenfeldtheorie und nur kurz nach der Formulierung der Quantenmechanik in ihrer heutigen Form. (In dieser Arbeit gab übrigens das Hopf-Bündel, welchem
auch in Teilen der vorliegenden Arbeit eine zentrale Rolle zukommt, sein Debüt in der Physik.)

Eine der neueren Verallgemeinerungen – und in gewissen Sinn auch Perfektionierungen – des mathematischen Formalismus, welche in vielerlei Hinsicht für die Lösung der oben angesprochenen Probleme maßgeschneidert zu sein scheint, ist die Nichtkommutative Geometrie.

Man sollte deshalb aber noch nicht auf eine baldige “freundliche Übernahme” spekulieren. Einige der noch zu bewältigenden Aufgaben werden im Folgenden herausgearbeitet. Dazu – und damit in Zukunft die Benutzung derart modischer “buzzwords” vermieden werden kann – ist es allerdings notwendig etwas konkreter zu werden,

1.1 Das Wörterbuch der Nichtkommutativen Geometrie

es kain gut kainen guter pelz gemacht aus schlechtes hor

Jiddisches Sprichwort [SN]

In dieser Arbeit wird nur der von A.Connes entwickelte Zugang verwendet, der mit dem Begriff des spektralen Tripels zur Zeit wohl als einziger eine koordinatenfreie Beschreibung des Gravitationsfeldes gestattet. Spektrale Tripel, die als Nichtkommutative Verallgemeinerung von Riemannschen Spin-Mannigfaltigkeiten aufgefasst werden können, bedürfen für ihre Definition überraschend weniger mathematischer Vorkenntnisse, und deshalb ist es möglich, sie bereits zu diesem frühen Stadium der Arbeit einzuführen. Man kann sich aber sicher schon denken, dass sich hinter dieser scheinbaren Einfachheit der Definition in Wirklichkeit eine Vielzahl von höchst nichttrivialen Theoremen aus den verschiedensten Teilgebieten der Mathematik verbirgt. Auf eine Erläuterung aller Einzelheiten dieser Definition muss deshalb verzichtet werden. Andererseits ermöglicht ein solcher Verzicht auf “technische Details” aber auch, einen groben und gelegentlich recht blumig formulierten Abriss der diesem Konzept zugrundeliegenden Philosophie zu geben. Das erfordert allerdings die Verwendung von Begriffen, die in der (sich daran anschließenden) Definition des spektralen Tripels nicht benötigt werden. Eine große Zahl dieser Begriffe wird im Verlauf der Arbeit noch er-
Einleitung

klärt werden, und es ist deshalb durchaus möglich den folgenden Abschnitt beim ersten Lesen der Arbeit zu überspringen, und gleich bei der Definition der spektralen Tripel weiter zu lesen.

1943 entdeckten Gelfand und Naimark beim Studium der Darstellungstheorie von C^*-Algebren, ein (später nach ihnen benanntes, zuvor aber schon von Stone [St] bemerktes) Theorem [GN], das man getrost als das Samenkorn der Nichtkommutative Geometrie bezeichnen kann. Im Wesentlichen besagt es, dass eine unitale kommutative C^*-Algebra \mathcal{A} stets als die Algebra $C(X)$ der Funktionen auf einem kompakten Hausdorff-Raum X aufgefasst werden kann,

$$\mathcal{A} \text{ kommutativ } \iff \mathcal{A} = C(X).$$

Umgekehrt ist $C(X)$ mit dem punktweisen Produkt von Funktionen und der Norm $$\|f\| = \max_x \{|f(x)|\}$$ natürlich eine kommutative C^*-Algebra, und weil die konstante Funktion $f(x) = 1$ in dieser Algebra liegt, ist $C(X)$ auch unital.

In Anbetracht dieser Äquivalenz von kompakten Hausdorff-Räumen und unitalen kommutativen C^*-Algebren liegt es dann nahe, nichtkommutative unitale C^*-Algebren als nichtkommutative kompakte Hausdorff-Räume aufzufassen. Diese grundlegende Idee der Nichtkommutativen Geometrie kam aber selbstverständlich erst sehr viel später auf. Solange man nur das Gelfand-Naimark-Theorem zur Verfügung hatte, wäre das Wort “Nichtkommutative Geometrie” auch nur ein “Dröhn-Wort” (buzz-word) gewesen (welche allerdings auch erst sehr viel später in Mode kamen).

Dieses Samenkorn ging dann Anfang der sechziger Jahre in Form des Serre-Swan Theorems auf, demzufolge jeder endlich-erzeugte projektive Modul über $\mathcal{A} = C(X)$ isomorph zum Raum der stetigen Schnitte in ein Vektorbündel E über X ist.

$$\mathcal{E} = p\mathcal{A}^n \iff \mathcal{E} = \Gamma(X, E).$$

Ein Modul \mathcal{E} heißt dabei endlich-erzeugt projektiv, wenn es eine selbstadjungierte $(n \times n)$-Matrix p mit Einträgen aus \mathcal{A} gibt, mit

$$p^2 = p \quad \text{und} \quad \mathcal{E} = p\mathcal{A}^n.$$

Solche Projektoren p stehen dann also für kommutatives \mathcal{A} in Eins-zu-Eins-Korrespondenz mit Vektorbündeln über X, sie existieren aber auch wenn \mathcal{A} nichtkommutativ ist, so dass man nunmehr auch von nichtkommutativen Vektorbündeln sprechen konnte.

Dieses Theorem machte auch zum ersten Mal die Nützlichkeit des Gelfand-Naimark Theorems augenfällig: Es stellte nämlich zum einen der Topologie algebraische Möglichkeiten zur Berechnung der K-Theorie (also der Äquivalenklassen von Vektorbündeln) von kompakten Räumen zur Verfügung, und zum anderen, was zunächst einmal die wichtigere Anwendung war, zeigte es in weitaus stärkerem Maße als das Gelfand-Naimark-Theorem allein, dass und wie Methoden aus der Topologie zum Studium der Darstellungstheorie von Operator-Algebren eingesetzt werden können.
1.1 Das Wörterbuch der Nichtkommutativen Geometrie

Der somit gebildete Keimling der Nichtkommutativen Geometrie brauchte dann aber noch ein paar Jahre bis er langsam zu wachsen und Wurzeln zu schlagen begann. Der für das Verständnis der spektralen Tripel vielleicht wichtigste Wurzelstrang, der zu dieser Zeit gebildet wurde (aber keineswegs der einzige), geht dabei auf eine Idee Atiyah's zurück.

Bemerkung 1.1.1. K-Theorie ist eine Kohomologie-Theorie im Sinn der algebraischen Geometrie, der deutet darauf hin, dass es neben den Äquivalenzklassen von Vektorbündeln \(K^0(X) \) noch eine zweite \(K \)-Gruppe, \(K^1(X) \), gibt, die algebraisch als Zusammenhangskomponenten der Gruppe der unitären Matrizen \(u \) (beliebigen Rangs) mit Einträgen aus \(\mathbb{A} \) beschrieben wird. Diese Gruppe wird in der Arbeit allerdings nicht benötigt, weil sie für alle hier betrachteten Beispiele ohnehin trivial ist. Deshalb wird sie auch in diesem Abschnitt unberücksichtigt bleiben.

Atiyah fand eine sehr natürliche, algebraische Möglichkeit, solche linearen Abbildungen zu konstruieren, die wiederum, ebenso wie das Serre-Swan-Theorem, keinen Wert auf die Kommutativität der Algebra legt. Der grundlegende, von Atiyah eingeführte Begriff ist dabei der folgende:

Definition 1.1.2. Ein Fredholm-Modul über einer unitalen \(*\)-Algebra \(\mathbb{A} \) ist eine Tripel \((\mathcal{H}, \mathbb{A}, F)\), gebildet aus einer \(*\)-Darstellung \(\pi \) der Algebra \(\mathbb{A} \) als beschränkte Operatoren auf einem Hilbertraum \(\mathcal{H} \) und einem selbstadjungierten Operator \(F \) mit \(F^2 = 1 \), so dass für alle Algebra-Elemente \(a \in \mathbb{A} \) der Kommutator \([F, \pi(a)]\) ein kompakter Operator ist.

Ein Fredholm-Modul heißt gerade, wenn zusätzlich ein selbstadjungierter Operator \(\gamma \) auf \(\mathcal{H} \) existiert mit

\[
\gamma^2 = 1, \quad [\pi(a), \gamma] = 0 \quad \text{und} \quad F\gamma = -\gamma F.
\]

Für gerade Fredholm-Moduln kann man den Hilbertraum stets in die Eigenräume zu den Eigenwerten \(\pm 1 \) von \(\gamma \) zerlegen, \(\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_- \) und in dieser Aufspaltung haben die Darstellung der Algebra und der Operator \(F \) dann die Gestalt:

\[
\pi(a) = \begin{pmatrix} \pi^+(a) & 0 \\ 0 & \pi^-(a) \end{pmatrix}, \quad F = \begin{pmatrix} 0 & P \\ Q & 0 \end{pmatrix},
\]

mit entsprechenden Operatoren \(P, Q \).

Gegeben sei nun ein solcher gerader Fredholm-Modul \((\mathcal{H}, \mathbb{A}, F, \gamma)\) sowie ein Projektor \(p \in M_n(\mathbb{A}) \), der einen endlich-erzeugten projektiven Modul über \(\mathbb{A} \) beschreibt. Zur Definition der Paarung \(([p], (\mathcal{H}, F)) \in \mathbb{Z} \) vergrößert man den Fredholm-Modul zunächst so zu einem Fredholm-Modul \((\mathcal{H}_n, \mathbb{A}, F_n, \gamma_n)\), dass man auch \(p \) (in offen-
Einleitung

sichtlicher Weise) darauf darstellen kann:

\[\mathcal{H}_n = \mathcal{E} \otimes \mathbb{C}^n, \]
\[F_n = F \otimes 1_n \]
\[\pi_n(a) = \pi(a) \otimes 1_n \quad a \in A \]
\[\gamma_n = \gamma \otimes 1_n. \]

Natürlich lässt sich auch die damit definierte Darstellung \(\pi_n(p) \) (die \((n \times n) \)-Matrix mit Einträgen \(\pi_n(p_{ij}) \)) wieder in ihre jeweiligen Einschränkungen \(\pi_n^\pm(p) \) auf \(\mathcal{H}_\pm \) zerlegen. Mit diesen Definitionen zeigt man dann, dass der Operator

\[\pi_n^+ (p) P \pi_n^- (p) : \mathcal{H}_- \rightarrow \mathcal{H}_+ \]

ein Fredholm-Operator ist, das heißt der Kern und der Kokern (der Kern des dazu adjungierten Operators) sind endlichdimensional, und folglich sein Index wohldefiniert ist. (Der Index eines Fredholm-Operators \(O \) ist als die ganze Zahl

\[\text{Ind} (O) = \text{dim} \text{Kern}(O) - \text{dim} \text{Kokern}(O) \]
definiert. Weil \(F \) selbstadjungiert und folglich \(\text{Ind}(F) = 0 \) ist, verwendet man den Operator \(P \).

Proposition 1.1.3. *Die Paarung:*

\[\langle [p], (\mathcal{E}, F) \rangle = \text{Ind} (\pi_n^+ (p) P \pi_n^- (p)) \]

hängt nur von der Äquivalenzklasse \([p]\) von \(p \) in \(K_0(A) \) ab, das heißt sie ist eine wohldefinierte Abbildung von \(K_0(A) \) nach \(\mathbb{Z} \).

Damit ist dann klar, dass man gerade Fredholm-Moduln über \(A \) als Elemente der \(K \)-Homologie \(K^0(A) \) auffassen kann. Wie später gezeigt wurde, ist die Homologie-Theorie \(K^0(A) \) sogar isomorph zur Gruppe der Homotopie-Klassen von geraden Fredholm-Moduln \([\mathcal{J}] \) \([\mathcal{K}] \). (Der Index hängt natürlich nur von der Homotopieklassen von \(\pi, F \) ab. Die Gruppenstruktur ist für Fredholm-Moduln über die direkte Summe definiert.)

Das ist die wesentliche Aussage des Atiyah-Jänich-Theorems.

Eine Schwierigkeit der obigen Beschreibung der \(K \)-Homologie durch Fredholm-Moduln besteht darin, dass es in der Praxis sehr schwer ist, den Index des recht abstrakten Operators \(\pi_n^+ (p) P \pi_n^- (p) \) auszurechnen, zumal man zuvor überhaupt erst einmal ein geeignetes \(F \) gefunden haben muss.
Beispiele für solche Operatoren F kann man aber mit Hilfe von elliptischen Differentialoperatoren konstruieren. (Ein Differential-Operator heißt elliptisch, wenn er endlichdimensionalen Kern hat, dann kann man ihn insbesondere auf dem unendlichdimensionalen Komplement des Kerns invertieren.) Differential-Operatoren D sind nicht beschränkt, und deshalb ist $D^2 \neq 1$, so dass (\mathcal{H}, A, D) kein Fredholm-Modul ist. Es kann aber stets ein geeignetes F als

$$F = \frac{D}{|D|} \quad |D| = \sqrt{D D^*}$$

definiert werden, und es ist wohlbekannt, dass in jeder Homotopie-Klasse von Fredholm-Moduln ein Repräsentant existiert, welcher auf diese Weise konstruiert werden kann. Allerdings wird die Eigenschaft $F^2 = 1$ für die Paarung mit der K-Theorie nicht direkt verwendet, sondern nur die daraus folgenden Eigenschaften des Kerns von P, Q, die man statt dessen aber auch durch die Elliptizität von D sicherstellen kann. Insbesondere spielt die Beschränktheit des Operators F überhaupt keine Rolle für den Index (solange $\pi^+_m(p) P \pi^-_m(p)$ beschränkt ist). Man geht deshalb von (beschränkten) geraden Fredholm-Moduln $(\mathcal{H}, A, F, \gamma)$ zu (unbeschränkten) K-Zyklen $(\mathcal{H}, A, D, \gamma)$ über. Solche K-Zykel werden dann ganz analog zu den Fredholm-Moduln definiert, wobei nur die Bedingung an F^2 durch eine Bedingung an den Kern von D ersetzt wird. Der selbstadjungierte Operator D kann dann wieder als

$$D = \begin{pmatrix} 0 & D_+ \\ D_- & 0 \end{pmatrix}$$

zerlegt werden, und die Paarung mit einer Klasse $[p]$ aus der K-Theorie schreibt sich dann als:

$$\langle [p], (\mathcal{H}, D) \rangle = \text{Ind} \left(\pi^+_m(p) D_+ \pi^-_m(p) \right).$$

Im Gegensatz zu dem entsprechenden Ausdruck für den Operator P eines beliebigen Fredholm-Moduls, kann dieser Index aber mit Hilfe einer lokalen Index-Formel als Integral einer d-Form (in d Dimensionen) berechnet werden [AtS].

$$\text{Ind} \left(\pi^+_n(p) D_+ \pi^-_n(p) \right) = \int_M \hat{A}(M) ch(p).$$

Hierbei ist $\hat{A}(M) = 1 + \frac{1}{12} \text{Tr}(R^2) + \mathcal{O}(R^4) + \ldots$ die Dichte des Dirac-Genius, die mit Hilfe des Riemannschen Krümmungstensors R berechnet werden kann. Sie setzt sich als Summe von Formen des Grades $4k$ zusammen, und weil in dieser Arbeit nur Beispiele mit Dimensionen kleiner als 4 angesprochen werden, wird sie deshalb keine Rolle spielen.

Die Chern-Klasse $ch(p)$, die jedem Element der K-Theorie (sie hängt nur vom Repräsentanten ab) eine geschlossene Form zuordnet, ist explizit als

$$ch(p) = \sum_{k=0} \sum_{j=0} \frac{1}{k!} \text{Tr}(p (dp)^{2k}) = \text{Tr}(e^K)$$
Einleitung

gegeben. \((K = p \, dp \, dp\) ist die Krümmung des Zusammenhangs \(p \, dp\) auf dem von \(p\) beschriebenen Bündel.) Die Geschlossenheit dieser Form ist vielleicht nicht ganz offensichtlich, folgt aber leicht aus \(p^2 = p\). Dann ist nämlich \(dp\, p = (1 - p) \, dp\) unter Ausnutzung der Zyklizität der Spur folgt \(dch_{2k}(p) = 0\) für alle \(k\).

Es stellte sich dann natürlich die Frage, ob ein Analogon zur obigen lokalen Index-Formel für Spin-Mannigfaltigkeiten auch für nichtkommutative Räume existiert. Diese Frage, die mittlerweile positiv beantwortet worden ist [CM1], war sicher eine der wichtigsten Triebsfedern auf dem Weg zum Begriff der spektralen Tripel.

Der erste (und für das Folgende wichtigste) Schritt, besteht darin, die lokale Index-Formel für kommutative Algebren in die Sprache der Operator-Algebren zu über setzen. Der Begriff der Differentialformen – die als Zierraum des Chern-Charakters benötigt werden – wurde als erstes übersetzt [CIHES]. Die entsprechenden Übersetzungen der de-Rham-Formen in Hochschild-Kohomologie beziehungsweise der de Rham-Homologie in die (periodische) zyklische Kohomologie werden hier aber nicht benötigt. Viel wichtiger ist die konkrete Darstellung dieser Differentialformen auf dem Hilbertraum \(\mathcal{H} = L^2(M, S)\). Wenn man den Dirac-Operator \(D\) schreibt, wobei \(\nabla_\mu\) die Komponenten des Spin-Zusammenhangs und \(E^\mu = \gamma^\alpha e_\mu^\alpha\) das “geslashte” Vielbein,

\[
E^\mu E^\nu + E^\nu E^\mu = -2g^{\mu\nu}
\]

bezeichnet, so ist für jede Funktion \(f \in C(M)\)

\[
[D, f] = (\partial_\mu f) E^\mu = c(df).
\]

Dabei wurde bereits die sogenannte Clifford-Wirkung \(c(df)\) der Einsform \(df = (\partial_\mu f) dx^\mu\) eingeführt, die eine Darstellung der Einsformen als beschränkte Operatoren auf \(L^2(M, S)\) ist. Formen höheren Grades lassen sich dann natürlich als antisymmetrisierte Produkte von Einsformen darstellen.

Auf die gleiche Weise kann man im übrigen auch für einen Fredholm-Modul vermittels \(df = -i[F, f]\) (de-Rham)-Differentialformen auf dem Hilbertraum darstellen.

Sehr viel komplizierter ist es, das Integral von Formen auf \(L^2(M, S)\) zu realisieren. Betrachtet man den Fredholm-Modul \(L^2(M, S), C^\infty(M), \mathcal{F} = \frac{\partial}{\partial \mu}\) über einer kompakten Riemannschen Spin-Mannigfaltigkeit \(M\) so stimmt das Integral \(\int_M f\) für eine beliebige stetige Funktion \(f \in C^\infty(M)\) mit der Operator-Spur ihrer Darstellung \(\text{Tr} \pi(f)\) überein. Die Integration von Differentialformen kann man aber nicht mit Hilfe der “gewöhnlichen” Spur von Operatoren erhalten.

Definition 1.1.4. Ein Fredholm-Modul \((\mathcal{H}, \mathcal{A}, \mathcal{F})\) heißt \(n\)-summierbar falls für alle \(a \in \mathcal{A}\)

\[
da \overset{def}{=} -i[F, \pi(a)] \in \mathcal{L}^n(\mathcal{H})
\]

ist. \((\mathcal{H}, \mathcal{A}, \mathcal{F})\) heißt \((n, \infty)\)-summierbar falls für alle \(a \in \mathcal{A}\)

\[(\pi(F, \pi(a))^a \in \mathcal{L}^{1, \infty}(\mathcal{H})
\]
1.1 Das Wörterbuch der Nichtkommutativen Geometrie

ist.

\(\mathcal{L}^n(\mathcal{H}) \) bezeichnet das Ideal aller Operatoren \(O \) mit der Eigenschaft \(\text{Tr}(O^*O)^n = \sum_k \mu_k(O)^n < \infty \), wobei \(\mu_k(O) \) die absteigend geordneten Eigenwerte des selbstadjungierten Operators \(O^*O \) bezeichnet. Das Ideal \(\mathcal{L}^{1,\infty} \) (innerhalb der beschränkten Operatoren) ist der Abschluss der Menge aller Operatoren, für die

\[
\text{Tr}_\omega(O) \overset{\text{def}}{=} \sup_N \frac{1}{\log N} \sum_k \mu_k(o) < \infty
\]

ist. \(\text{Tr}_\omega \) ist die sogenannte Dixmier-Spur, deren Definition eigentlich etwas subtiler als die angegebene ist, worauf auch das Anhängsel \(\omega \) hinweist. Der Name deutet schon darauf hin, dass es sich (verblüffenderweise) um eine echte Spur handelt, das heißt es ist \(\text{Tr}_\omega(\alpha A + \beta B) = \alpha \text{Tr}_\omega(A) + \beta \text{Tr}_\omega(B) \) und für alle Operatoren \(A \in \mathcal{L}^{1,\infty} \) und alle beschränkten Operatoren \(S \) ist

\[
\text{Tr}_\omega(TS) = \text{Tr}_\omega(ST),
\]

sie ist also zyklisch.

Wenn ein Fredholm-Modul \(n \)-summierbar ist, so folgt dass jede \(n \)-Form

\((-i)^n f_0[F, f_1] \cdots [F, f_n] \) Spur-Klasse ist, und man kann sie dann mit Hilfe der Spur über \(\mathcal{H} \) integrieren. Der Fredholm-Modul \((L^2(M, S), C^\infty(M), F = \mathcal{P}_M) \) ist aber (mit \(d = \text{dim}M \)) nicht \(d \)-summierbar sondern \((d, \infty) \)-summierbar. Das Integral von \(d \)-Formen wird deshalb mit Hilfe der Dixmier-Spur gebildet.

Die Darstellung einer Differentialform des Grades \(d = \text{dim}M \)

\((-i)^d f_0[D, f_1] \cdots [D, f_d] \)

vermittels des Dirac-Operators hat den zusätzlichen Makel kein kompakter Operator zu sein; dieser kann aber durch Multiplikation mit \(|D|^{-d} \) behoben werden. Man landet dann wieder in dem Dixmier-Ideal \(\mathcal{L}^{1,\infty} \), was man sich am besten klar machen kann, wenn man die Summe über die charakteristischen Werte \(\mu_p(D) = |p|, p \in \mathbb{R}^d \) des Dirac-Operators auf dem (euklidischen) \(\mathbb{R}^d \) betrachtet:

\[
\text{Tr}_\omega(|D|^{-d}) = \frac{1}{\log P} \int_{P} \frac{\text{d}p \text{d}\Omega}{|p|} < \infty.
\]

Die Ausage gilt aber für alle Riemannschen Spin-Mannigfaltigkeiten der Dimension \(d \), denn für die Existenz der Dixmier-Spur ist nur das asymptotische Verhalten der charakteristischen Werte von \(D \) entscheidend, und dieses hängt nur von der Dimension ab: Lokal, in einer infinitesimalen Umgebung eines Punktes, sehen ja alle \(d \)-dimensionalen Riemannschen Mannigfaltigkeiten wie der \(\mathbb{R}^d \) aus.

Es gilt dann Connes’ berühmtes Theorem

Satz 1.1.5. Für das gerade spektrale Tripel \((L^2(M, S), C(M), D, \gamma)\) über einer kompakten Riemannschen Spin-Mannigfaltigkeit der Dimension \(d \) ist mit einer bekannten Konstanten \(C \), die für das Weitere aber nicht wichtig ist:

\[
\text{Tr}_\omega(f |D|^{-d}) = C \int_M f \text{d}V
\]
Einleitung

für jede Funktion \(f \in C(M) \) und mit der Volumenform \(dV \) auf \(M \). Desweiteren gilt

\[
\text{Tr}_\omega(\gamma_f \cdot [D, f_1] \cdot \ldots \cdot [D, f_d]|D|^{-d}) = C \int_M f_0 \cdot f_1 \cdot \ldots \cdot f_d \cdot dV
\]

für alle \(f_0, f_1, \ldots, f_d \in C^\infty(M) \).

Die Graduierung \(\gamma \) ist im übrigen als \(\gamma = E^1 \cdot E^2 \cdot \ldots \cdot E^d \) gegeben, also als das Analogon von \(\gamma_5 \) in einer beliebigen geraden Dimension. In ungeraden Dimensionen ist auf dem Spin-Bündel stets \(E^1 \cdot E^2 \cdot \ldots \cdot E^d = 1 \).

Wenn man bedenkt, dass die \(E^\mu \) die Darstellung der Basis-Differentialen \(dx^\mu \) sind, so ist klar, dass \(\gamma \) als Darstellung der Volumenform aufgefasst werden kann.

Der Dirac-Operator \(D \) einer Riemannschen Spin-Mannigfaltigkeit \(M \) enthält aber nicht nur die Information über den Differentialkalkül auf \(M \): Mit Connes Abstandsformel

\[
d(x, y) = \sup_{||Df|| \leq 1} \{|f(x) - f(y)|\}
\]

lässt sich auch der geodätische Abstand \(d(x, y) \) zweier Punkte \(x, y \in M \), und somit die gesamte Metrik auf \(M \), aus dem Dirac-Operator rekonstruieren. Einen direkten, anschaulichen Beweis dieser Formel gibt es aber nur in einer Dimension, wo der Dirac-Operator durch \(-i\partial_x\) gegeben ist, und somit

\[
\sup_{||Df|| \leq 1} \{|f(x) - f(y)|\} = \sup_{||Df|| \leq 1} \left\{ \left| \int_y^x [D, f] \right| \right\} = \int_y^x |1| = d(x, y)
\]

folgt. In höheren Dimensionen muss man auf etwas raffiniertere Argumente zurückgreifen.

Der Dirac-K-Zykel, der die Übersetzung und die (nichtkommutative) Verallgemeinerung der lokalen Index-Formel in die Sprache von Operator-Algebren gestattet, verschlüsselt also zugleich die vollständige Information über die zugrundeliegende Riemannsche Spin-Mannigfaltigkeit. Dieser Umstand lässt sich aber nur ausnutzen, wenn man diesen speziellen K-Zykel \((\mathcal{H}, A, D, \gamma, J) \) in der algebraischen Sprache charakterisieren kann. Dies leistet der im folgenden eingeführte Begriff des spektralen Tripels.

\textbf{Definition 1.1.6. [CspT] Ein reelles, gerades spektrales Tripel} ist ein Quintupel \((\mathcal{H}, A, D, \gamma, J) \), bestehend aus einem geraden K-Zykel \((\mathcal{H}, A, D, \gamma) \), sowie einem antunitären Operator \(J \) auf \(\mathcal{H} \) mit

\[
[a, Jb^*J^{-1}] = 0 \quad \forall a, b \in A,
\]

so dass die folgenden sieben Axiome erfüllt sind.

1. \textbf{Klassische Dimension:} Es existiert eine nichtnegative ganze Zahl \(d \), die klassische Dimension, so dass

\[
|D|^{-d} \in L^{1, \infty} \quad \text{und} \quad \text{Tr}_\omega \neq 0
\]

ist. Wenn \(d \) ungerade ist, so ist \(\gamma = 1 \) und folglich \([D, \gamma] = 0 \). Für gerades \(d \) ist hingegen \(\{D, \gamma\} = 0 \).
2. **Regularität:** Für jedes \(a \in \mathcal{A} \) sind sowohl der Operator \([D, a]\) als auch die Operatoren

\[
[[D], a] \quad \text{und} \quad [[D], [D, a]]
\]
beschränkt.

3. **Endlichkeit:** Die Algebra \(\mathcal{A} \) ist eine Prä-\(C^* \)-Algebra und der Raum der glatten Vektoren

\[
\mathcal{H}^\infty \overset{\text{def}}{=} \bigcap_k \text{Def}(D^k),
\]

wobei \(\text{Def}(D^k) \subset \mathcal{H} \) den Definitionsbereich des Operators \(D^k \) bezeichnet, ist ein endlich erzeugter projektiver Modul über \(\mathcal{A} \).

4. **Realität:** Die Realitätsstruktur \(J \) erfüllt

\[
J^2 = \epsilon 1, \quad J\gamma = \epsilon'\gamma J \quad \text{und} \quad JD = \epsilon' DJ,
\]

wobei die Vorzeichen den folgenden Tabellen entnommen sind:

\[
\begin{array}{c|cccc}
\hline
\text{d mod 8} & 0 & 2 & 4 & 6 \\
\hline
\epsilon & + & - & - & + \\
\epsilon' & + & + & + & + \\
\epsilon'' & + & + & + & - \\
\hline
\end{array}
\]

wenn die Dimension gerade (modulo 8) ist, beziehungsweise

\[
\begin{array}{c|cccc}
\hline
\text{d mod 8} & 1 & 3 & 5 & 7 \\
\hline
\epsilon & + & - & - & + \\
\epsilon' & - & + & + & + \\
\hline
\end{array}
\]

für ungerade Dimensionen.

5. **Ordnung-Eins-Bedingung:** Es gilt für alle \(a, b \in \mathcal{A} \)

\[
[[D, a], Jb^*J] = 0.
\]

6. **Orientierung:** Es existieren Algebra-Elemente \(b^{(j)}, a_0^{(j)}, \ldots, a_d^{(j)} \), so dass

\[
\gamma = \sum_j Jb^*Ja_0^{(j)}a_1^{(j)}[D, a_1^{(j)}]\cdots[D, a_d^{(j)}]
\]

ist, und darüberhinaus die Hochschild-Zykel-Bedingung

\[
\begin{align*}
b\gamma & := \sum_j Jb^*Ja_0^{(j)}a_1^{(j)}[D, a_2^{(j)}]\cdots[D, a_d^{(j)}] \\
& + \sum_j \sum_{m=1}^{d-1} (-1)^m Jb^*Ja_0^{(j)}[D, a_1^{(j)}]\cdots[D, a_m^{(j)}][D, a_{m+1}^{(j)}]\cdots[D, a_d^{(j)}] \\
& + (-1)^d \sum_j Jb^*Ja_d^{(j)}a_0^{(j)}[D, a_1^{(j)}]\cdots[D, a_{d-1}^{(j)}] \\
& = 0
\end{align*}
\]
erfüllt ist.
7. Poincaré-Dualität: Die durch
\[q([p], [q^\circ]) = \langle [p \otimes q^\circ], (\mathcal{H}, D) \rangle \]
mit Hilfe der Index-Paarung mit dem K-Zykel \((\mathcal{H}, A, D)\) definierte bilineare Abbildung
\[q : K^*(A) \times K^*(A^0) \rightarrow \mathbb{Z} \]
ist nicht entartet, das heißt es folgt aus \(q([p], [p]) = 0\) stets, dass die Klasse \([p]\) trivial ist.

Diese Definition bedarf nun noch einiger Erläuterungen

Bemerkung 1.1.7. Zur Realitätsstruktur \(J\)

- Mit Hilfe der Realitätsstruktur (oder auch Ladungskonjugation) \(J\) ist auf \(\mathcal{H}\) eine Darstellung der sogenannten opposite Algebra \(A^0\) definiert:
\[a^0 \overset{def}{=} J a^* J^{-1} \quad \Rightarrow \quad a^0 b^0 = (ba)^0. \]

Diese Darstellung kommutiert nach Voraussetzung mit der Darstellung der Algebra, \([a, b^\circ] = 0\). Der Hilbertraum \(\mathcal{H}\) kann daher auch als Bimodul über \(A\) aufgefasst werden:
\[a(\psi|b) = (a\psi)b = ab^0 \psi = aJb^*J^{-1}\psi, \quad \psi \in \mathcal{H} \quad a, b \in A. \]

In den folgenden Bemerkungen wird klar werden, wozu die Existenz einer solchen Darstellung benötigt wird. Wenn die Algebra \(A\) kommutativ ist, und jeder Links-Modul deshalb zugleich ein Rechts-Modul ist, verlangt man \(Ja^* J^{-1} = a^0 = a\).

- Im klassischen Beispiel des Dirac-K-Zykels über einer (kompakten) Riemannschen Spin-Mannigfaltigkeit ist \(J\) durch den Operator der Ladungskonjugation gegeben. Deren Existenz und Eigenschaften folgen aus den Eigenschaften der Clifford-Algebra \(\mathbb{C}l_d\), ebenso wie die Tabellen für die Parameter \(\epsilon, e^l\) und \(e^\circ\).

- Wenn man (im kommutativen Fall) zum Dirac-Operator \(D\) ein \(U(1)\)-Eichpotential \(A\) addiert, so gilt (entsprechend der Dimension von \(M\) modulo 8)
\[J(D + A)J^{-1} = \pm (D - A). \]

Die in den obigen Axiomen geforderte (Anti-)Kommutationsrelation zwischen \(D\) und \(J\) ermöglicht es daher den metrischen Anteil \(D = E^\mu(\partial_\mu + \omega_\mu)\) von dem “elektromagnetischen” Anteil \(A = E^\mu A_\mu\) zu trennen. Es ist, wenn man die Existenz der Darstellung von \(A^0\) voraussetzt, aber durchaus möglich auf die Forderung dieser Relation zwischen \(D\) und \(J\) zu verzichten. In diesem Fall beschreibt man (für kommutatives \(A\)) eine (kompakten Riemannsche) \(Spin^c\)-Mannigfaltigkeit. Auf diesen existiert zwar ein Dirac-Operator, dieser (anti-)kommutiert aber nicht mit dem Operator \(J\) (welcher aufgrund der Eigenschaften der Clifford-Algebra immer existiert).
Bemerkung 1.1.8. Die Ordnung-Eins-Bedingung stellt im klassischen Fall sicher, dass \(D \) ein Differential-Operator erster Ordnung ist. Im allgemeinen Fall benötigt man das Axiom auch für die Formulierung der Poincaré-Dualität für Formen. Dieser Punkt soll hier aber übergangen werden.

Bemerkung 1.1.9. Das Axiom der Orientierung besagt im kommutativen Fall einfach, dass \(\gamma \) als Darstellung der Volumenform auf \(\mathcal{H} \) aufgefasst werden kann. Die Hochschild-Zykel-Bedingung ist dann äquivalent zur totalen Antisymmetrie des Ausdrucks für \(\gamma \). (Hochschild-Zykel sind die nichtkommutative Übersetzung von Differentialformen. Auch die langwierige Erläuterung dieses Punkts soll hier übersprungen werden.)

Bemerkung 1.1.10. Die Dimension des spektralen Tripels wird natürlich für die Formulierung des Axioms der Orientierung benötigt. Darüberhinaus sichert sie (vermittels der Dixmier-Spur) aber die Existenz eines Integrals mit den entsprechenden Eigenschaften.

Bemerkung 1.1.11. Das Axiom der Poincaré-Dualität impliziert (über den Chern-Isomorphismus) die Nichtentartung der Paarung

\[
(\alpha, \beta) = \int_M \alpha \wedge \ast \beta
\]

für beliebige geschlossene \(k \)-Formen \(\alpha, \beta \).

Ein vielzitiertes “Theorem” von Sullivan besagt, dass diese Bedingung hinreichend und notwendig ist, um sicherzustellen, dass im kommutativen Fall \(\mathcal{A} = C(M) \) der topologische Raum \(M \) mit der Struktur einer glatten Mannigfaltigkeit (einem glatten Atlas) versehen werden kann. Connes zitiert dieses Theorem allerdings wie folgt:

We can thus assert that, in the simply connected case, a closed manifold is, in a rather deep sense, more or less the same thing as a homotopy type \(X \) satisfying Poincaré duality in ordinary homology together with a preferred element \(\nu_X \in K_0(M) \) which induces Poincaré duality in \(KO \)-theory tensored by \(\mathbb{Z}_2 \).

Das bevorzugte Element der \(K \)-Homologie, welches die Poincaré-Dualität in der \(K \)-Theorie induziert, die sogenannte Fundamentalklasse (das Bild der Volumenform unter dem Chern-Isomorphismus), ist für Spin-Mannigfaltigkeiten als Dirac-\(K \)-Zykel realisiert.

Für die Formulierung dieses Axioms, welches ja Projektoren aus \(K_0(M) \) und solche aus \(K_0(M) \cong K_0(M) \) paart, benötigt man die Bimodul-Struktur von \(\mathcal{H} \). Nur dadurch ist sichergestellt, dass die Projektoren \(p \in M_n(M) \) und \(q^0 \in M_n(M) \) auf \(\mathcal{H} \otimes \mathbb{C}^n \otimes \mathbb{C}^n \) miteinander kommutieren.

Es ist, wie bereits in den obigen Bemerkungen angedeutet wurde, nicht sehr schwierig aus den Daten eines spektralen Tripels für eine kommutative Algebra \(\mathcal{A} = C(M) \) die Cliffordwirkung (über \([D, a] \)) – und damit die Spinstruktur auf \(M \) – zu rekonstruieren. Dann folgt auch, dass der Operator \(D \) von der Form

\[
D = E_0^\mu \nabla_\mu + \rho,
\]
Einleitung

ist, mit einer matrixwertigen Funktion ρ, welche die geforderten (Anti-)Kommutationsrelationen erfüllt. Diese Funktion ρ wird aber durch die Axiome, die ja Aussagen über die Kommutatoren von Funktionen mit D, beziehungsweise die Asymptotik des Spektrums machen, nicht weiter eingeschränkt. Alle Operatoren $D + \rho$ führen auch auf die gleiche Metrik. Der Raum aller Operatoren, die auf diese Metrik führen, ist offensichtlich ein affiner Raum.

Satz 1.1.12. [CspT] Sei $\mathcal{A} = C^\infty(M)$, wobei M eine kompakte glatte Mannigfaltigkeit der Dimension d sei.

1. Es sei des Weiteren $(\mathcal{H}, \mathcal{A}, D, \gamma, J)$ ein spektrales Tripel. Dann existiert eine durch

 $$d(x, y) = \sup_{\|Df\| \leq 1} \{|f(x) - f(y)|\}$$

 eindeutig bestimmte Metrik g auf M.

2. Die Metrik g hängt nur von der unitären Äquivalenzklasse des spektralen Tripels ab. Die Menge aller unitären Äquivalenzklassen von spektralen Tripeln, welche zur gleichen Metrik korrespondieren, bilden eine durch die verschiedenen Spinstrukturen σ auf M parametrierte endliche Menge von affinen Räumen A_σ.

4. Für den Dirac-Zykel ist

 $$W Res(|D|^{2-d}) = -c_d \int_M R \sqrt{g} d^d x$$

 mit einer bekannten (hier nicht relevanten) positiven Konstanten c_d.

Es muss aber betont werden, dass die Axiome für spektrale Tripel nur auf Riemannsche Mannigfaltigkeiten, also solche mit einer euklidischen Signatur der Metrik, anwendbar sind. Der physikalisch relevante Fall einer Lorentzschen Raumzeit kann damit zur Zeit nicht beschrieben werden, wofür es eine Reihe von guten Gründen gibt. Das wohl schwierigste Problem bei der Verallgemeinerung des Konzepts der spektralen Tripel auf Lorentz-Mannigfaltigkeiten ist die Konstruktion einer Integration mit Hilfe eines hyperbolischen Operators. Die Eigenwerte des Dirac-Operators sind in diesem Fall
1.2 Die nichtkommutative Beschreibung des Standardmodells

\[\mathcal{A}_f = M_3(\mathbb{C}) \oplus \mathbb{H} \oplus \mathbb{C} \]

aufgefasst werden. Hierbei ist \(\mathbb{H} \) die reelle Algebra der Quaternionen

\[\mathbb{H} = \left\{ \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \bar{\alpha} \end{array} \right) \mid |\alpha|^2 + |\beta|^2 = 1 \right\}, \]

deren unitäre Untergruppe die Gruppe \(SU(2) \) ist. Die Algebra \(M_3(\mathbb{C}) \) der komplexen \((3 \times 3)\)-Matrizen wird ebenso wie die Algebra \(\mathbb{C} \) als Algebra über den reellen Zahlen aufgefasst. Wegen der zu beachtenden Linearität hat die Algebra \(\mathcal{A}_f \) nur 5 nichttriviale irreduzible Darstellungen:
Einleitung

- Die beiden eindimensionalen Darstellungen, in denen nur \mathbb{C} nichttrivial dargestellt ist (einem als Multiplikation mit z, einmal mit \bar{z}, was für die reelle Algebra \mathbb{C} möglich ist).
- Die beiden analogen dreidimensionalen Darstellungen für $M_3(\mathbb{C})$, die der 3- und der $\bar{3}$-Darstellung der Gruppe $SU(3)$ entsprechen.
- Die zweidimensionale Darstellung der Unter-Algebra \mathbb{H}, welche der Fundamentaldarstellung der $SU(2)$ entspricht.

Damit auch lokale Eichtransformationen als unitäre Elemente einer entsprechenden Algebra aufgefasst werden können, tensoriert man diese Algebra nun noch mit den reellwertigen Funktionen auf einer vierdimensionalen (Riemannschen) Spin-Mannigfaltigkeit M, und erhält somit die nichtkommutative Raumzeit

$$\mathcal{A} = \mathbb{C}^\infty(M) \otimes \mathcal{A}_f,$$

für die nunmehr ein spektrales Tripel zu konstruieren ist. Der Hilbertraum dürfte, mit einer Einschränkung klar sein: Man fasst einfach alle elementaren chiralen Fermionfelder zu einem grossen Hilbertraum zusammen. Allerdings kann man wegen der euklidischen Signatur der Metrik nicht mit Weyl-Spinoren arbeiten. Deshalb werden die chiralen Fermionen durch Vierer-Spinoren beschrieben, was allerdings eine Verdopplung der Fermionfelder zur Folge hat. Eine weitere Verdopplung kommt dadurch ins Spiel, dass man zur Definition der Ladungskonjugation J, sowohl die Teilchen als auch die Antiteilchen als unabhängige Spinoren einführen muss. Das wird im sechsten Kapitel erläutert. Dort findet der Leser auch die vollständige Darstellung der Algebra \mathcal{A} auf dem resultierenden

$$\mathcal{H} = L^2(M, S) \otimes \mathbb{C}^{90},$$

welche natürlich so gewählt ist, dass alle Quantenzahlen der Fermionen bezüglich der drei Eichgruppen stimmen. Die Eichtransformationen sind dabei als

$$\psi^u = u\psi u^* = uJu^{-1}\psi \quad u \in \mathcal{A} \quad uu^* = u^*u = 1, \quad (1.1)$$

gegeben, was dann auf der entsprechenden Basis der chiralen Felder zum Beispiel

$$u \left(\begin{array}{c} e_L(x) \\ \nu_L(x) \end{array} \right) u^* = U_{\text{weak}}(x) \left(\begin{array}{c} e_L(x) \\ \nu_L(x) \end{array} \right) \lambda(x)$$

mit $\lambda(x) \in U(1)$ und $U_{\text{weak}}(x) \in SU(2)$ für alle $x \in M$, bedeutet. Die vollständigen Einzelheiten dieser Darstellung (und die Erklärung der Zahl 90) werden später – im Abschnitt 6.5 – noch angegeben, an dieser Stelle soll nur an die grundlegenden Ideen und Ergebnisse dieser Anwendung der spektralen Tripel erinnert werden. Es muss aber noch auf eine auftretende Schwierigkeit hingewiesen werden: Die Hyperladungen der Quarks sind drittelzahlig, wohingegen die Algebra \mathbb{C} nur die Darstellungen zu den Ladungen $1, -1$ aufweist. Allerdings ist die unitäre Gruppe der Algebra \mathcal{A}_f als $U_f = U(3) \times SU(2) \times U(1)$ gegeben, enthält also eine überzählige $U(1)$ in dem Faktor $U(3)$. Die, von der Hyperladung erzeugte Eichgruppe $U(1)$ wird dann als geeignete
1.2 Die nichtkommutative Beschreibung des Standardmodells

Kombination der beiden $U(1)$-Faktoren gewählt, während die verbleibende $U(1)$ vermittels der sogenannten Unimodularitätsbedingung von Hand eliminiert wird. (Das sieht zwar ein wenig nach Bastelei aus, es ist aber alles andere als trivial, dass die Eichtransformationen des Standardmodells überhaupt in dieser Form realisiert werden können. Für die meisten Yang-Mills-Theorien wäre das nicht möglich.)

Die Verwendung der “adjungierten” Darstellung (1.1) als Eichtransformation begründet sich in der (Anti-)Kommutationsrelation der Ladungskonjugation J mit dem Dirac-Operator D, welchen es als Nächstes zu konstruieren gilt. D sollte natürlich kovariant unter den Eichtransformationen transformieren, das heißt für jedes $u \in A$ sollte der transformierte Operator $u(u^*)^\circ D(u)^\circ u^*$ selbst ein Dirac-Operator sein, also allen Axiomen für spektrale Tripel genügen. Man prüft leicht nach, dass dies tatsächlich immer der Fall ist. Wie üblich kann ein solcher kovarianter Dirac-Operator durch einen Hintergrund-Dirac-Operator D_0 (der auch den Spinzzusammenhang enthält) sowie Eichpotentiale A (selbstadjungierte Eins-Formen) als $D_A = D_0 + A$ parametrisiert werden.

Bei der Wahl des Hintergrund-Dirac-Operators D_0 gibt es dann eine Menge Freiheiten. Eine durch das Ergebnis motivierte Wahl ist

$$D = iE^\mu \nabla_\mu \otimes 1 + \gamma_5 \mathcal{M},$$

wobei die (90×90)-Matrix \mathcal{M} die entsprechende Zusammenfassung aller fermionischen Massenmatrizen ist. Mit Hilfe dieses Dirac-Operators lassen sich nun die Zusammenhänge A als beliebige selbstadjungierte Einsformen

$$A = \sum_i a_i [D_0, b_i] = \sum_i a_i \{c(d b_i) + \gamma_5 [\mathcal{M}, b_i]\}$$

konstruieren. Die Massenmatrizen vertauschen nicht mit allen Elementen der Algebra, sonst wären sie ja eichinvariant. Die Massenterme der Fermionen sind aber nur unter den Gruppen $SU(3)$ und $U(1)_{em}$ invariant. Es muss betont werden, dass die Möglichkeit die Massenmatrix in das nichtkommutative Differential zu integrieren, die (maximale) Paritätsverletzung der elektroschwachen Wechselwirkung voraussetzt. Es tritt daher neben der Darstellung der üblichen Eichfelder A_μ, W_μ, G_μ des Standardmodells, noch ein weiteres, skalares Feld auf, so dass der allgemeine kovariante Dirac-Operator (in einer vereinfachten Schreibweise) die Form

$$D = D_0 + E^\mu (A_\mu + W_\mu + G_\mu) + \gamma_5 \phi \mathcal{M}$$

hat. Das Skalarfeld ϕ transformiert sich (als Teil des Zusammenhangs) unter den Eichtransformationen der Untergruppe $U(1) \times SU(2)$ als

$$\phi \mathcal{M} \mapsto U \phi \mathcal{M} U^* + U[\mathcal{M}, U^*]$$

(und ist invariant unter der Gruppe $SU(3)$). Verschiebt man dieses Feld gemäß

$$\phi \mathcal{M} = \phi \mathcal{M} + \mathcal{M}$$

so transformiert sich φ homogen,

$$\varphi \mapsto U \varphi U^*,$$

wobei U eine Matrix aus der Gruppe $SU(3)$ ist.
Einleitung

und zwar genau mit den Quantenzahlen des Higgsfeldes, mit dem es dann natürlich identifiziert werden kann. Das Higgsfeld tritt hier also als Folge der Paritätsverletzung als Teil des Eichzusammenhangs in Erscheinung, und muss nicht mehr von Hand hinzugefügt werden.

Damit sind nun alle wesentlichen Ingredienzen des Standardmodells in einem spektalen Tripel vereinigt. Insbesondere findet dabei das Higgsfeld in sehr natürlicher Weise eine neue Rolle als gleichberechtigter Partner der übrigen Bosonen des Standardmodells, nämlich als einer der Anteile des Zusammenhangs.

Es gibt mehrere Möglichkeiten mit Hilfe der Daten dieses spektralen Tripels ein Wirkungsfunktional für die physikalischen Felder zu konstruieren.

$$S_{CL} = (F, F),$$

wobei (\cdot, \cdot) ein mit Hilfe der Dixmier-Spur konstruiertes invarianes Skalarprodukt auf dem Raum der Zwei-Formen ist. Auf die Schwierigkeiten bei der Konstruktion des Differentials für Eins-Formen soll an dieser Stelle der Arbeit ebensowenig eingegangen werden, wie auf die Diskussion der Freiheiten bei der Wahl des invarianten Skalarprodukts, welche für die Anpassung der Kopplungskonstanten an die experimentellen Werte sehr wichtig sind ([MP][TS]).

In lokalen Koordinaten stimmt die Connes-Lott-Wirkung mit der Wirkung des Standardmodells überein, was sehr bemerkenswert ist, weil man dabei also insbesondere das Higgs-Potential $V(\varphi) = \lambda |\varphi|^4 - \frac{k}{2} |\varphi|^2$ als Anteil der Yang-Mills-Wirkung auf einem nichtkommutativen Raum interpretiert. (Wie das zur spontanen Symmetriebrechung führende Potential $V(H)$ zustande kommt, kann man sich leicht vorstellen, wenn man bedenkt, dass im Zusammenhang eigentlich das Feld $\phi = \varphi - 1$ auftaucht.)

Wenn man sie als Funktional der Metrik auffasst (indem man den Dirac-Operator als dynamische Variable verwendet), so sind sie demnach gute Observablen des Gravitationsfeldes. Mit diesen Observablen kann dann auch die Wirkung – als asymptotische Entwicklung einer Cut-off-Spur von D^2 – gebildet werden:

Lemma 1.2.1 ([CC). J Sei $\chi : \mathbb{R} \to \mathbb{R}$ eine Funktion, die genügend schnell für $\mathbb{R} \ni u \to \infty$ abfällt. Des weiteren sei D der allgemeine kovariante Dirac-Operator des
Die nichtkommutative Beschreibung des Standardmodells

obigen spektralen Tripels, und \(\Lambda \) eine reelle positive Konstante. Dann ist

\[
S_\Lambda \overset{\text{def}}{=} \text{Tr}_\chi \left(\frac{D^2}{\Lambda^2} \right) = \int_M \sqrt{\mathfrak{g}} \, d^4 x \left\{ \frac{43}{8\pi^2} \Lambda^4 + \frac{43}{48\pi^2} R \Lambda^2 + \mathcal{L}_{\text{St.mod}} + \frac{9}{64\pi^2} C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \frac{1}{12} \left| \varphi \right|^2 R + \mathcal{O}(\Lambda^{-2}) \right\},
\]

Hierbei bezeichnet \(C_{\mu\nu\rho\sigma} \) den Weyl-Tensor des Gravitationsfeldes und \(\mathcal{L}_{\text{St.mod}} \) ist die vollständige Yang-Mills-Higgs-Lagrangedichte des Standardmodells.

Diese Aussage sei nun noch mit ein paar Bemerkungen erläutert.

Bemerkung 1.2.2. Die (von mir gewählte) obige Formulierung, dass \(\mathcal{L}_{\text{St.mod}} \) die vollständige Yang-Mills-Higgs-Lagrangedichte des Standardmodells ist, ist eigentlich etwas ungenau. Wie sich zeigt kann man die Kopplungskonstanten in dieser Lagrandichte nämlich nicht ganz genau an die experimentellen Werte anpassen. Wenn man bedenkt, dass man zur Anpassung der sieben experimentellen Parameter (zu den fünf Parametern \(m_H, m_W, \sin \theta_W, g_s, g_{e\mu\nu} \) des bosonischen Sektors des Standardmodells kommen ja noch die Gravitations- und die kosmologische Konstante hinzu) nur vier freie Parameter bei der Konstruktion der Wirkung zur Verfügung hat, ist die Abweichung allerdings erstaunlich gering. Darüber hinaus erhält man eine Vorhersage der Higgsmasse:

\[
m_H = 182 \pm 20 \ \text{GeV}.
\]

Die Berechnung der Kopplungskonstanten ist allerdings sehr aufwendig, vor allem weil man zunächst recht unrealistische Werte findet. Insbesondere ergibt sich die Einschränkung

\[
g_3 = g_2 = \sqrt{\frac{5}{3}} g_1
\]

an die Kopplungsparameter der drei Eichgruppen des Standardmodells. Die Idee besteht aber ohnehin darin, die Theorie als effektive Theorie bei einer Cut-off-Skala \(\Lambda \) anzusehen. Die experimentellen Werte der Kopplungsparameter bei der \(Z \)-Masse findet man dann aus der obigen Relation zwischen den Kopplungskonstanten bei der Skala \(\Lambda \) mit Hilfe des Renormierungsfusses. Es ist aber wohl bekannt, dass sich die Kopplungskonstanten des Standardmodells nicht genau in einem Punkt (bei entsprechend hohen Energien) treffen, auch wenn sie sich recht nahe kommen [AdBF]. Deshalb kann man auf diese Weise, wenn man von einer solchen “Vereinheitlichung” der Wechselwirkungen startet, natürlich auch nicht zum Standardmodell zurück gelangen. Allerdings macht diese Renormierungsgruppen-Analyse auch nur dann Sinn, wenn zwischen der \(Z \)-Masse und der Skala \(10^{13}–10^{17} \ \text{GeV} \) keine neue Physik auftritt, was ohnehin keine sehr attraktive Vorstellung ist.

Bemerkung 1.2.3. Die spektrale Wirkung \(\text{Tr}_\chi(D^2) \) ist invariant unter allen unitären Transformationen auf dem Hilbertraum, also nicht nur unter Diffeomorphismen. Connes dreht diese Beobachtung um, und verlangt, dass eine physikalisch sinnvolle
Einleitung

Wirkung spektral invariant sein muss, sich also als Summe über eine Funktion der Eigenwerte des Dirac-Operators schreiben lassen muss.

Die Einstein-Hilbert-Wirkung ist aber nicht spektral invariant. Es ist auch wohlbekannt, dass man die Metrik einer Riemannschen (Spin-)Mannigfaltigkeit nicht vollständig aus dem Spektrum des Dirac-Operators rekonstruieren kann:

One cannot hear the shape of a drum.

Streng genommen ist die spektrale Wirkung aber auch keine Wirkung. Das würde nämlich voraussetzen, dass man Anfangs- und Endwerte so vorgeben kann, dass sie ein eindeutiges Extremum besitzt. Etwas genauer formuliert, sollte es möglich sein die Randwerte des metrischen Tensors auf zwei beliebigen raumartigen Hyperflächen vorgeben. Die spektrale Wirkung ist aber als Integral über die ganze Mannigfaltigkeit gegeben. Die einzig mögliche Randbedingung ist die Wahl der (flachen, $R = 0$) Metrik im Unendlichen. Die daraus folgenden Bewegungsgleichungen im Vakuum (wenn man die Fermionen und die Eichbosonen vernachlässigt) besagen daher nur, dass die Raumzeit eine Einstein-Mannigfaltigkeit ($G^\mu_\nu = 0$) ist. Das ist zwar sicher eine spektral invariante Aussage, aber viel lernen kann man daraus nicht.

Die nichtkommutative Beschreibung des Standardmodells ist natürlich nur eine der unzähligen physikalischen Anwendungen der Nichtkommutativen Geometrie, und die obige Darstellung bezieht sich auch ausschließlich auf Connes’ Zugang ([D-VKM 1,2],[RW 1,2],[CES],[RH],[HPS],[PP]). Es gibt viele weitere Beschreibungen des Standardmodells als Yang-Mills-Theorie auf einem nichtkommutativen Raum ([TS],[G-B •],[MP],[PSS],[KE]), die alle in natürlicher Weise das Higgs-Feld als Eichboson beschriften. Jeder dieser Ansätze hat im Vergleich mit dem hier verwendeten Ansatz Vor- und Nachteile, so dass es zum gegenwärtigen Zeitpunkt sicherlich wünschenswert wäre, diese Zugänge zu ihrem Vorteil zu einem einzigen zu fusionieren.

Connes’ Zugang ist aber zur Zeit der einzige, der das Standardmodell als einen Anteil des Gravitationsfeldes auf einem nichtkommutativen Raum beschreibt. Dieser Aspekt der Vereinheitlichung macht ihn zum einen besonders attraktiv, andererseits existieren gerade in diesem Zugang zur Zeit die meisten offenen Fragen, die teilweise oben bereits angedeutet wurden.

- Die Connesche Formulierung arbeitet mit einer euklidischen Signatur der Metrik. Es ist sicher notwendig eine Lorentzsche Formulierung zu finden. Dann wird es auch möglich sein mit Weyl-Spinoren zu arbeiten, so dass auch das zur Zeit noch recht störend wirkende Problem der Fermionverdopplung dabei gelöst würde.

- Das Modell enthält eine überzählige $U(1)$, die mit Hilfe der sogenannten Unimodularitätsbedingung von Hand eliminiert werden muss.

- Es ist zur Zeit nicht klar, ob man das Axiom der Poincaré-Dualität auch im Nichtkommutativen Fall benötigt. In der Beschreibung des Standardmodells ver-
hindert (unter anderem) dieses Axiom den Einbau der mittlerweile experimentell nachgewiesenen rechtshändigen Neutrinos.

Von der Beantwortung zumindest einiger dieser Fragen hängt die Zukunft dieser physikalischen Anwendung der Nichtkommutativen Geometrie ab. Andererseits sind diese Probleme klar eingegrenzt, und ihre Lösung wird fraglos zu einem besseren Verständnis der Physik des Standardmodells führen. Das macht (wenigstens für mich) den größten Reiz der Nichtkommutativen Geometrie aus.

1.3 Über den Aufbau der Arbeit

Das zentrale Leitthema der vorliegenden Arbeit, die es auf vier verschiedene Teile mit zugehörigen Anfängen bringt, ist die soeben beschriebene Formulierung des Standardmodells als ein Anteil des Gravitationsfeldes auf einem geeignet gewählten nichtkommutativen Raum, und insbesondere die im vorigen Abschnitt angedeuteten, offenen Fragen

Im Vordergrund steht dabei vor allem das Problem der Quantisierung dieses Modells, beziehungsweise die Frage, wie man auf beliebigen nichtkommutativen Räumen Quantenfeldtheorie formulieren kann. Eine der auftretenden Schwierigkeiten besteht dabei in der im Hinblick auf nichtkommutative Beispiele unvermeidlichen globalen Formulierung der Nichtkommutativen Geometrie. Quantenfeldtheorie ist demgegenüber üblicherweise in einer lokalen Sprache formuliert, und es ist deshalb nicht offensichtlich wie man ihre grundlegenden Konzepte, wie zum Beispiel die (Anti-)Kommutationsrelationen zu gleichen Zeiten, auf nichtkommutative Räume übertragen soll.
Einleitung

Die in letzter Zeit erschöpfend diskutierten perturbativen Modelle über dem Moyal-deformierten \mathbb{R}^n ([G-BVq] [Kr-Diss][KrW][G-BM] + 100) bilden dabei sicherlich eine Ausnahme. In diesem Beispiel gibt es nämlich Derivationen, so dass man einen Impulsraum definieren kann. Die Nichtkommutativität der zugrundeliegenden Raumzeit kommt dann durch zusätzliche (Impuls-abhängige) Phasenfaktoren in den Feynman-Regeln zum Ausdruck. Dabei spielt in der Formulierung auch die Tatsache eine Rolle, dass die Raumzeit durch Deformation aus dem kommutativen \mathbb{R}^n hervorgeht. Die perturbativen Aspekte der entsprechenden Quantenfeldtheorie sollten dann ebenfalls nur eine Deformation ihres bekannten kommutativen Analogons sein, zumindest geht diese Annahme in alle betrachteten Modelle ein.

Die in der nichtkommutativen Beschreibung des Standardmodells verwendete Algebra ist aber keine Deformation der Funktionen über der Raumzeit. Es gibt auch keinen mir bekannten Grund zu vermuten, dass eine hypothetische Algebra, die das Standardmodell zu höheren Energien fortsetzt, eine solche Deformation sein sollte, zumal das nur einen weiteren freien Parameter in die Theorie einführen würde.

Im letzten Teil der Arbeit werden drei weitere Projekte angesprochen, die sich noch in einem sehr frühen Stadium befinden, und die alle durch das Problem der Quantisierung auf nichtkommutativen Räumen motiviert sind.

Symmetrien von spektralen Tripeln sind natürlich auch im Hinblick auf Anwendungen in der Hochenergiephysik interessant:

Das spektrale Tripel des Standardmodells ist ein Tensorprodukt des spektralen Tripels einer kommutativen Mannigfaltigkeit mit einem spektralen Tripel für eine nichtkommutative endlichdimensionale Algebra. Solche spektralen Tripel können vollständig klassifiziert werden, was im ersten Kapitel des dritten Teils geschieht. Mit der so geschaffenen Vergleichsmöglichkeit kann man dann auch an die Aufgabe herangehen,
Über den Aufbau der Arbeit

die mathematische Struktur des Standardmodells weiter zu untersuchen. Insbesondere stellt sich ja die Frage inwiefern sich das Standardmodell gegenüber anderen Yang-Mills-Higgs-Theorien auszeichnet. Wie sich zeigt gibt es aber immer noch viel zu viele Theorien, die sich ebenso wie das Standardmodell, mit Hilfe von spektralen Tripeln konstruieren lassen. Es ist aber denkbar, dass sich das Standardmodell (oder seine Fortsetzung zu höheren Energien) durch zusätzliche Symmetrien, die aus der Formulierung als spektrales Tripel resultieren, auszeichnet. So existiert zum Beispiel mit der q-Deformation der universellen Einhüllenden der Lie-Algebra $sl(2, \mathbb{C})$ eine Hopf-Algebra, die sowohl die inneren Symmetrien $u(1) \oplus su(2) \oplus su(3)$ als auch die Lie-Algebra der Lorentzgruppe, $sl(2, \mathbb{C})$, als Unteralgebren enthält. Es ist eine interessante, offene Frage, ob diese (oder eine ähnliche) Hopf-Algebra auf die Differentialalgebra des Standardmodells wirkt. Bei einer positiven Beantwortung dieser Frage könnte man dabei sehr viel über die Struktur der fermionischen Massenmatrizen lernen, denn diese gehen ja in das nichtkommutative Differential ein und die Freiheiten bei ihrer Wahl dürften daher durch eine solche Symmetrie-Anforderung eingeschränkt werden. Diese Idee ist die wesentliche Motivation für die im zweiten Kapitel dieses Teils durchgeführte Untersuchung möglicher Hopf-Symmetrien von diskreten spektralen Tripeln (in dem im fünften Kapitel erarbeiteten Sinn).

Überspitzt ausgedrückt, beschäftigt sich die Mathematik mit dem Ausloten von (Denk-)Möglichkeiten, wohingegen die Physik vor allem das Erfassen des Existierenden in ihren Mittelpunkt rückt. So gesehen ist die vorliegende Arbeit sehr mathematisch, und man sollte dementsprechend auch keine bahnbrechenden neuen Erkenntnisse für die Physik von ihr erwarten. Vielmehr ist sie von dem Bemühen geprägt, einige, für die nichtkommutative Beschreibung des Standardmodells und seiner (hypothetischen) Quantisierung relevante, mathematische Strukturen möglichst gründlich zu verstehen. Das führt allerdings auf eine Reihe neuer, und vor allem sehr konkreter, offener Fragen in diesem Zusammenhang. Einige dieser Fragen könnten eine Richtung für weitere Untersuchungen der Struktur des Standardmodells im Rahmen der Nichtkommutativen Geometrie aufweisen.

Um nur ein Beispiel herauszuziehen, sei das Problem des Einbaus der rechtshändigen Neutrinos in das Modell erwähnt. Bei der im dritten Teil der Arbeit erarbeiteten Klassifikation der endlichen Geometrien zeigt sich nämlich, dass, im Gegensatz zu früheren Erwartungen, dieser Einbau keineswegs durch eine nur geringfügige Änderung der Axiome (den Verzicht auf die Forderung der Poincaré-Dualität) erreicht werden kann. Solange das Modell euklidisch formuliert ist, sind massive Neutrinos in diesem Modell nicht gestattet. Allerdings sollte man das Modell ohnehin auf Lorentz-Mannigfaltigkeiten formulieren, und in diesem Fall dürfte der Einbau der rechtshändigen Neutrinos möglich sein. Im vierten Teil wird das Konzept der “spektralen Quadrupel” erläutert, das ich in Zusammenarbeit mit Tomas Kopf als ersten Versuch auf dem Weg zu einer “kausalen” Formulierung des Modells (die ja auch aus anderen, bereits angesprochenen Gründen wichtig ist) erarbeitet habe.

“Wenn man ein Buch schreibt, so tut man dies eben so sehr um verstanden, als auch um nicht

1Dabei entsteht allerdings der Eindruck, dass auch in der Mathematik “nichts, das es nicht gibt” existiert.
1.3 Über den Aufbau der Arbeit
Teil I

Die spektrale Sphäre
In den folgenden Kapiteln sollen die grundlegenden Ideen der Nichtkommutativen Geometrie in möglichst einfacher Weise anhand eines eigentlich recht nahe liegenden Beispiels veranschaulicht werden.

Insofern stellt die Sphäre eine Ausnahme dar. Sie ist einerseits ein vor allem topologisch höchst nichttriviales Beispiel, die konkreten Berechnungen bleiben aber trotzdem überschaubar. So existieren zum Beispiel unendlich viele nichtäquivalente Linienbündel, deshalb ist es sinnvoll, die Rolle und die explizite Konstruktion des Spinbündels, das topologisch nichttrivial ist, genauer zu studieren.

Vor allem “lebt” mit dem Schwinger-Modell eine der am besten ausgearbeiteten und verstandenen Quantenfeldtheorien auf der Sphäre. Will man also die Quantisierung von Feldtheorien in die globale Sprache der Nichtkommutativen Geometrie übersetzen, so ist hier ein gutes Spielzeugmodell vorhanden, an dem man wesentliche Aspekte lernen kann. Darüberhinaus kann man die klassische Sphäre auch zu einer nichtkommutativen “Quantensphäre” deformieren. Es ist dann zu hoffen, dass eine verallgemeinerte Version des (quantisierten) Schwinger-Modells auf dieser “Quantensphäre” formuliert werden kann. Letztlich ist man natürlich an der Quantisierung komplizierter nichtkommutativer Modelle interessiert; ein solches Spielzeugmodell wird mit
Sicherheit schon eine Reihe Ideen und Impulse hierfür mit sich bringen.

Dass es überhaupt möglich ist, zu einer vollständigen, expliziten Beschreibung der Sphäre zu gelangen, liegt (natürlich) an ihrer $SU(2)$-Symmetrie. Tatsächlich läßt sich die gesamte Konstruktion vollständig auf die Forderung dieser Symmetrie zurückführen. Fragt man nach einer Riemannschen Spin-Mannigfaltigkeit mit einer $SU(2)$-Symmetrie, so gelingt man zu dem hier angesprochenen spektralen Tripel für die zweidimensionale Sphäre, sowie zu einem weiteren für die dreidimensionale Sphäre, also die Gruppenmannigfaltigkeit der Gruppe $SU(2)$. Dieses Verfahren, spektrale Tripel aus ihren Symmetrien zu konstruieren, läßt sich natürlich auch für andere Gruppen durchführen. Benutzt man die Gruppe $U(1) \times U(1)$, so gelangt man zum nichtkommutativen Torus, einem der wenigen wohlbekannten nichtkommutativen Beispiele. Die im vierten Kapitel dargestellte verblüffend einfache Konstruktion zeigt die Tragfähigkeit unseres Symmetrie-Konzeptes. Die Feuerprobe, nämlich die Konstruktion eines neuen nichtkommutativen Beispiels, steht an dieser Stelle aber noch aus.

Kapitel 2

Von der lokalen zur globalen Beschreibung der Sphäre

Die zentrale Aufgabe ist die Berechnung des Dirac-Operators, welche dann im nächsten Kapitel systematisch durchgeführt wird. (Hier werden nur ein paar einfache Übersetzungsvorschriften angegeben.) Der Dirac-Operator auf der Sphäre ist invariant unter der Wirkung der Gruppe $SU(2)$, und diese Forderung legt ihn zugleich fest. (Der Begriff Sphäre wird hier also ausschließlich auf die Kugeloberfläche angewandt, nicht aber auf eine glatte zweidimensionale Mannigfaltigkeit, die daraus durch Deformation entsteht.)

2.1 Die C^*-Algebren $C(S^1)$ und $C(S^2)$

Ausgangspunkt der Nichtkommutativen Geometrie ist das Gelfand-Naimark-Theorem. Um es formulieren zu können, seien kurz die verwendeten Begriffe definiert:

Eine Banach-Algebra \mathcal{A} ist eine Algebra, die zusätzlich mit einer Norm $\| \cdot \|$ versehen und in dieser Norm vollständig ist. Die Norm $\| \cdot \|$ ordnet jedem Element $a \in \mathcal{A}$ eine reelle Zahl $\|a\|$ zu, und zwar so, dass stets

1. $\|a\| \geq 0$ und $\|a\| = 0 \iff a = 0$;
2.1 Die C^*-Algebren $C(S^1)$ und $C(S^2)$

2. $\|\alpha a\| = |\alpha| \|a\|$ für $\alpha \in \mathbb{C}$;
3. $\|a + b\| \leq \|a\| + \|b\|$;
4. $\|ab\| \leq \|a\| \|b\|$

erfüllt ist. Vollständigkeit bedeutet, dass alle Cauchyfolgen ($\|a_n - a_m\| < \varepsilon$, wenn n, m groß genug gewählt sind) auch in \mathfrak{A} konvergieren.

Ist die Banach-Algebra darüber hinaus mit einer Involution, also einer Abbildung $a \in \mathfrak{A} \mapsto a^* \in \mathfrak{A}$ mit den Eigenschaften

1. $a^{**} = a$
2. $(ab)^* = b^* a^*$
3. $(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$

versehen und gilt dann auch noch

$$\|a^*\| = \|a\|,$$

so nennt man \mathfrak{A} eine Banach*-Algebra.

Definition 2.1.1. Eine C^*-Algebra ist eine Banach*-Algebra \mathcal{A} mit der Eigenschaft

$$\|a^*a\| = \|a\|^2$$

für alle $a \in \mathcal{A}$.

Die obige C^*-Bedingung ist ein Überbleibsel einer Darstellung von \mathcal{A} auf einem Hilbertraum \mathcal{H}. In diesem Fall wäre die Norm über

$$\|a\|^2 = \sup \{ \langle a\psi, \alpha\psi \rangle : \psi \in \mathcal{H} ; \langle \psi, \psi \rangle = 1 \}$$

gegeben. Sie ist also eine notwendige Bedingung, damit überhaupt eine Darstellung einer Banach*-Algebra auf einem Hilbertraum \mathcal{H} existieren kann. Es gilt in der Tat sogar:

Lemma 2.1.2. Sei \mathcal{A} eine C^*-Algebra. Dann ist \mathcal{A} isomorph zu einer in der Norm abgeschlossenen, selbstadjungierten Algebra von beschränkten Operatoren auf einem Hilbertraum.

(Der Begriff "abgeschlossen" kann hier gleichwertig mit "vollständig" verwendet werden. Selbstadjungiertheit einer Algebra meint natürlich, dass mit jedem Element auch das Adjungierte in der Algebra liegt.)

Genau wie in der Quantenmechanik kann man dann die Zustände $\psi \in \mathcal{H}, \langle \psi, \psi \rangle = 1$ als lineare Funktionale ω_ψ auf der Algebra gemäß

$$\omega_\psi (a) \overset{def}{=} \langle \psi, a\psi \rangle$$
auffassen. Es sei dabei stets vorausgesetzt, dass ψ nicht im Kern irgendeines Algebra-Elementes liegt, so dass diese Linearform nicht entartet ist. Wenn man die Norm

$$\|\omega\| \overset{def}{=} \sup \{ \|\omega(a)\| : \|a\| = 1 \}$$
auf den linearen Funktionalen über \mathcal{A} einführt, lassen sich die so konstruierten speziellen Linearformen etwas eleganter wie folgt charakterisieren:
Definition 2.1.3. Ein lineares Funktional ω über einer C^*-Algebra heißt positiv, wenn
\[\omega(a^*a) \geq 0 \]
für alle $a \in \mathcal{A}$ gilt. Gilt darüber hinaus $||\omega|| = 1$, so nennt man ω Zustand.
Zu jedem Zustand ω auf \mathcal{A} kann man eine Darstellung auf einem Hilbertraum konstruieren, so dass $\omega(\cdot) = \langle \psi, \cdot \rangle$ für ein $\psi \in \mathcal{H}$, $\langle \psi, \psi \rangle = 1$. Dies ist die Gelfand-Naimark-Segal-Konstruktion, welche hier aber nicht benötigt wird.
Auf den positiven linearen Funktionalen ist dann eine natürliche Ordnung definiert:
\[\omega_1 \geq \omega_2 \iff \omega_1 - \omega_2 \text{ ist positiv}; \]
man sagt dann, ω_1 majorisiert ω_2.

Definition 2.1.4. Ein Zustand ω über \mathcal{A} wird als reiner Zustand definiert, wenn jedes von ω majorisierte lineare Funktional von der Form $\lambda \omega$ mit $0 \leq \lambda \leq 1$ ist.
Diese Definition entspricht genau der quantenmechanischen: Hat man eine Darstellung von \mathcal{A} auf \mathcal{H}, so ist für jeden Zustand $\psi \in \mathcal{H}$ auf der Untermenge $\mathcal{A}\psi \subset \mathcal{H}$ eine Darstellung von \mathcal{A} definiert. Der durch ψ definierte Zustand über \mathcal{A} ist dann und nur dann rein, wenn diese Darstellung irreduzibel ist.
Für kommutative Algebren \mathcal{A} sind aber alle irreduziblen Darstellungen eindimensional. Deshalb lassen sich reine Zustände in diesem Fall auch als Charaktere definieren: Ein Charakter ist ein *-Homomorphismus nach \mathbb{C}, also eine lineare Abbildung $\chi : \mathcal{A} \rightarrow \mathbb{C}$ mit $\chi(a^*) = \overline{\chi(a)}$ und $\chi(ab) = \chi(a)\chi(b)$.
Solche Charaktere können dann als eindimensionale Darstellung $\langle a\psi = \chi(a) \cdot \psi \rangle$ der Algebra aufgefasst werden. Ein Zustand ist daher genau dann rein, wenn er ein Charakter ist.
Für nichtkommutative Algebren, die im Allgemeinen nur wenige eindimensionale Darstellungen – also Charaktere – haben, besteht diese Eins-zu-Eins-Korrespondenz zwischen reinen Zuständen und Charakteren nicht.
Aus diesem Grund macht für nichtkommutative Algebren nur der Begriff “reiner Zustand” Sinn, und er wird deshalb gleich für die Formulierung des Gelfand-Naimark-Theorems herangezogen.
Die Beispiele für kommutative C^*-Algebren lassen sich recht einfach charakterisieren:

Satz 2.1.5. (Gelfand, Naimark 1943)
Sei \mathcal{A} eine kommutative C^*-Algebra und \mathcal{M} der Raum der reinen Zustände von \mathcal{A}, dann ist \mathcal{M}, versehen mit der Gelfand-Topologie ein lokalkompakter, topologischer Hausdorff-Raum und \mathcal{A} ist isomorph zu der Algebra $C_0(\mathcal{M})$ der stetigen Funktionen auf \mathcal{M}, welche im Unendlichen verschwinden. Insbesondere ist \mathcal{M} dann und nur dann kompakt, wenn \mathcal{A} unital ist.
Der Begriff “im Unendlichen verschwinden” wird der Anschaulichkeit zuliebe verwendet. In einer abstrakten Situation hat man sich unter $C_0(\mathcal{M})$ die Vervollständigung der Algebra der stetigen Funktionen mit kompaktem Träger in der Supremums-Norm vorzustellen. Für kompakte Räume gibt es selbstverständlich kein “Unendlich” und deshalb wird dann im folgenden einfach $C(\mathcal{M})$ geschrieben.
2.1 Die C^*-Algebren $C(S^1)$ und $C(S^2)$

2.1.1 Symmetrien und Normen

Für den Kreis S^1, der sich als die Menge $\{e^{i\varphi} \in \mathbb{C} \mid \varphi \in [0, 2\pi]\}$ beschreiben läßt, besagt ein Satz von N. Wiener, dass sich beliebige stetige Funktionen als Potenzreihe in $e^{i\varphi}$ entwickeln lassen. Algebraisch betrachtet, hat $C(S^1)$ also einen unitären Erzeuger u,

$$u^*u = uu^* = 1.$$

Damit ist die C^*-Algebra $C(S^1)$ aber noch nicht eindeutig spezifiziert. Es muss noch festgelegt werden, welche Potenzreihen $\sum f_k u^k$ in $C(S^1)$ konvergieren sollen, und welche nicht. Dies ist äquivalent zur Definition einer Norm, denn $C(S^1)$ kann ja auch als Norm-Abschluß des Raumes der Polynome in u angesehen werden. Gesucht sind geeignete Bedingungen, die die Norm auf allen Polynomen so fixieren, so dass das Gelfand-Naimark-Theorem die im Abschluß resultierende C^*-Algebra als $C(S^1)$ identifizieren kann. Es wird bald klar werden, dass die Relationen der Algebra allein dazu nicht imstande sind. Anders ausgedrückt: es gibt verschiedene C^*-Algebren mit genau einem unitären Erzeuger, keinen weiteren Relationen, aber unterschiedlichen Normen.

Im Allgemeinen, das heißt bei einer über ihre Erzeuger und deren Relationen vorgegebenen beliebigen Algebra, wird es sehr schwer sein, die Bedingungen an die Norm konkret anzugeben. Da der Kreis aber ein homogener Raum für die Gruppe $U(1)$ ist, ergibt sich aus der induzierten Gruppenwirkung

$$u^n \mapsto e^{i\alpha} u^n, \quad e^{i\alpha} \in U(1),$$

auf die Algebra der Polynome in u eine elegante Möglichkeit:

Proposition 2.1.6. *Die Bedingung*

$$\|1 + e^{-i\alpha} u\| = 2, \quad \forall \alpha \in [0, 2\pi] \quad (2.1)$$

legt auf eindeutige Weise eine C^-Norm auf der Algebra der Polynome in u fest. Die sich nach dem Norm-Abschluß ergebende C^*-Algebra ist isomorph zu $C(S^1)$.*

Beweis:

Jeder Charakter χ auf der von u erzeugten Algebra ist eindeutig durch seine Auswertaung auf u fixiert. Weil u unitär ist, ist $\chi(u)$ eine komplexe Zahl mit $|\chi(u)| = 1$. Wenn der Raum der Charaktere wieder mit \mathcal{M} bezeichnet wird, ist demnach:

$$\mathcal{M} \subseteq S^1$$

als topologischer Raum. Wegen des Gelfand-Naimark-Theorems ist

$$\|1 + e^{-i\alpha} u\| = \sup_{\chi \in \mathcal{M}} \|1 + e^{-i\alpha} \chi(u)\|. \quad (2.2)$$

Daher kann $\|1 + e^{-i\alpha} u\|$ nur dann 2 sein, wenn ein $\chi \in \mathcal{M}$ existiert, so dass $\chi(u) = e^{i\alpha}$.

Da die Algebra nämlich unital ist, ist \mathcal{M} kompakt. Wäre $e^{i\alpha} \notin \mathcal{M}$, so träfe dies also auf eine komplette offene Umgebung $V \ni e^{i\alpha}$ innerhalb der S^1 zu, also $V \cap \mathcal{M} = \emptyset$.

Das würde aber bedeuteten, dass die Norm von \(1 + e^{-i\alpha u} \) unmöglich 2 sein kann. Die Funktion \(F(\chi) = |1 + e^{-i\alpha \chi}| \) ist auf \(S^1 \setminus V \) schließlich streng kleiner als 2, und \(1 + e^{-i\alpha u} \) ist einfach das Supremum von \(F \) auf \(M \).

Langer Rede kurzer Sinn:

\[M = S^1. \]

(Ein strenger Beweis ist das natürlich nur wenn man Wiener's Theorem benutzt. Ansonsten wäre die von \(u \) erzeugte Algebra nach dieser Proposition eine Unteralgebra von \(C(S^1) \) und es wäre immer noch zu zeigen, dass (2.1) überhaupt als \(C^* \)-Norm Sinn macht.)

Wesentlich am obigen Argument ist, dass \(\alpha \) alle Werte \([0, 2\pi]\) durchlaufen kann. (Eine dichte Untermenge hätte strenggenommen genügt, aber das wäre eine wenig hilfreiche Haarspalterei gewesen.) Betrachtet man statt des Kreises zum Beispiel das Intervall \([0, \pi]\) auf der reellen Achse, so lassen sich die stetigen Funktionen noch immer in \(e^{i\phi} \) entwickeln, wobei aber nun \(\varphi \in [0, \pi] \) ist. Für die Norm von \(1 + e^{-i\alpha u} \) findet man dann wieder 2 falls \(\alpha \in (0, 2\pi) \), aber

\[1 + e^{-i\alpha u} = \sqrt{2 + 2\cos \alpha} < 2 \quad \alpha \in (\frac{3}{2}\pi, 2\pi), \]

und

\[1 + e^{-i\alpha u} = \sqrt{2 - 2\cos \alpha} < 2 \quad \alpha \in (\pi, \frac{3}{2}\pi). \]

Wie dieses Gegenbeispiel beweist, ist eine \(C^* \)-Algebra durch ihre Erzeuger und deren Relationen noch nicht eindeutig festgelegt. Allerdings ist es richtig, dass die Norm eindeutig ist, wenn alle konvergenten/divergenten Potenzreihen vollständig bekannt sind, man die entsprechende \(C^* \)-Algebra also als Menge kennt.

Besonders elegant formulieren lässt sich (2.1), wenn man berücksichtigt, dass das Algebra-Element \(1 + e^{-i\alpha u} \) und als Resultat der Wirkung des Gruppenelementes \(e^{-i\alpha} \) auf \(U(1) \) auf \(1 + u \) angesehen werden kann. (2.1) kann dann als Invarianz der Norm unter dieser Wirkung verstanden werden. Weil die Norm dann bereits als die Supremums-Norm auf \(C(S^1) \) bestimmt ist, gilt diese Invarianz automatisch für alle \(f \in C(S^1) \) und insbesondere ist sie wohldefiniert für alle \(f \in C(S^1) \). Das wäre im obigen Gegenbeispiel nicht der Fall gewesen (zum Beispiel ist die Funktion \(f(\varphi) = \varphi^{-1} \) auf \([0, \pi]\) stetig, \(f(\varphi + \pi) \) aber nicht).

Klarerweise ist die Gruppenwirkung \(f(\varphi) \mapsto f(\varphi + \alpha) \) ein \(* \)-Automorphismus von \(C(S^1) \), und als solcher muß sie normerhaltend sein. Man könnte, statt (2.1) zu fordern, \(C(S^1) \) also auch als diejenige \(C^* \)-Algebra mit einem unitären Erzeuger \(u \) definieren, bei der sich die \(U(1) \)-Wirkung \(u \mapsto e^{i\alpha} u \) als \(* \)-Automorphismen auf die gesamte Algebra fortsetzt. In physikalischen Anwendungen hat man normalerweise gleich eine Darstellung der \(C^* \)-Algebra auf einem Hilbert-Raum \(\mathcal{H} \) gegeben. Die obige Charakterisierung der Norm vermittels \(* \)-Automorphismen ist dann äquivalent zu der Existenz einer zyklischen Darstellung der Algebra auf einem Hilbertraum, der selbst eine (unitäre) Darstellung der \(U(1) \) trägt (mit \(U_\alpha \) bezeichnet), so dass \(e^{i\alpha} u = U_\alpha u U_\alpha^* \) auf \(\mathcal{H} \) gilt. Dies ist eine Konsequenz aus der folgenden, wohlbekannten
Proposition 2.1.7. Sei \(\psi_0 \) der zyklische Vektor einer zyklischen Darstellung der \(C^* \)-Algebra \(A \) auf \(\mathcal{H} \). Dann ist der Zustand
\[
\omega(a) \overset{\text{def}}{=} \langle \psi_0, a\psi_0 \rangle \quad \forall a \in A
\]
invariant unter einem \(* \)-Automorphismus \(\tau \) von \(A \), also
\[
\omega(\tau(a)) = \omega(a) \quad \forall a \in A,
\]
 wenn und nur wenn es einen unitären Operator \(U_\tau \) auf \(\mathcal{H} \) gibt, so daß
\[
U_\tau aU_\tau^* = \tau(a) \quad \forall a \in A.
\]
Ein solcher Zustand \(\omega \) kann natürlich kein reiner Zustand sein: Damit er invariant unter der Ersetzung \(u \mapsto e^{i\alpha}u \) ist, muß automatisch \(\omega(u^n) = 0 \), falls \(n \neq 0 \), gelten. Reine Zustände sind aber Charaktere, und diese können, auf \(u \) ausgewertet, nicht Null sein. Die zusätzliche Wahl \(\omega(1) = 1 \) definiert aber einen solchen (”unreinen”) Zustand, und mit Hilfe der GNS Konstruktion findet man eine entsprechende Darstellung.

2.1.2 \(C(S^2) \).
Die zweidimensionale Sphäre ist als Untermannigfaltigkeit
\[
S^2 = \{ \bar{x} \in \mathbb{R}^3 : |\bar{x}| = 1 \}
\]
in den \(\mathbb{R}^3 \) eingebettet und mit der, von der flachen Metrik des \(\mathbb{R}^3 \) induzierten, Metrik versehen. Bekanntermaßen lassen sich alle stetigen Funktionen auf \(S^2 \) in Kugelflächenfunktionen entwickeln. Dies motiviert die Wahl der vier Erzeuger \(a, b, c_\pm \), die den Relationen
\[
a b = 4 c_+ c_- \quad (2.3) \\
c_+ + c_- = 1 \quad (2.4)
\]
genügen. Die Involution ist auf \(A \) (= \(C(S^2) \)) dann durch
\[
a^* = b \\
c_\pm^* = c_\pm
\]
definiert. Der Grund, \(c_\pm \) einzuführen, wird später klar. Mit Hilfe der Kugelflächenfunktionen sind die Erzeuger in lokalen Koordinaten als
\[
a = e^{i\varphi} \sin \theta = \sqrt{\frac{8\pi}{3}} Y_{1,1}(\varphi, \theta) \\
b = e^{-i\varphi} \sin \theta \\
(c_+ - c_-) = \cos \theta = \sqrt{\frac{4\pi}{3}} Y_{1,0}(\varphi, \theta) \quad (2.5)
\]
zu identifizieren. Demnach ist der von den Erzeugern \(a, b, (c_+ - c_-) \) aufgespannte linene Unterraum invariant unter der Wirkung der Gruppe \(SU(2) \). Der Bequemlichkeit halber wird in der Folge aber mit der Lie-Algebra \(su(2) \) gearbeitet. Diese ist dann als
\[
L_3 a = a, \quad L_3 (c_+ - c_-) = 0, \quad L_3 b = -b \\
L_+ a = 0, \quad L_+ (c_+ - c_-) = a, \quad L_+ b = -2(c_+ - c_-) \\
L_- a = 2(c_+ - c_-), \quad L_- (c_+ - c_-) = -b, \quad L_- b = 0,
\]
auf den Erzeugern dargestellt und wird auf beliebige Polynome aus \(A \) vermittels der Leibniz-Regel

\[
L_{\pm,3}(fg) = (L_{\pm,3}f)g + f(L_{\pm,3}g),
\]
also als Derivationen, fortgesetzt. Man prüft leicht nach, dass dies mit der Relation (2.3) verträglich ist. Zum Beispiel \(L_3(ab) = 0 = 4L_3(c_+c_-) \) oder, nicht ganz so offensichtlich:

\[
L_+(4c_+c_-) = 4 \left(\left(\frac{a}{2} \right)c_- + c_+(-\frac{a}{2}) \right) = -2a(c_+ - c_-) = L_+(ab),
\]

wobei man \(L_{\pm,3}(c_+ + c_-) = L_{\pm,3}1 = 0 \) benutzt.

Die Verwendung der Leibniz-Regel für die Fortsetzung der Wirkung der Lie-Algebra auf Polynome ist eine notwendige Bedingung, damit die resultierende Darstellung der Gruppe \(SU(2) \) durch \(*\)-Automorphismen realisiert sein kann. Bezeichnet man also für \(\Gamma \in SU(2) \) die entsprechende lineare Wirkung auf \(f \in A \) mit \(\Gamma.f \in A \), so gilt:

\[
\Gamma.(fg) = (\Gamma.f)(\Gamma.g), \quad \Gamma.(f^*) = (\Gamma.f)^*, \quad \forall f, g \in A.
\]

Genau wie beim Kreis kann man nun die Norm fixieren, indem man die Invarianz für alle \(\Gamma \in SU(2) \) auf einem Element von \(A \), welches sein Maximum genau einmal auf \(S^2 \) annimmt, fordert. Eine solche Funktion ist

\[
f = 1 + a,
\]
welche nur in \(\varphi = 0, \theta = \frac{\pi}{2} \) ihren Maximalwert 2 erreicht. Die Norm auf \(A \) ist dann eindeutig durch die Bedingung

\[
\|1 + \Gamma.a\| = 2 \quad \forall \Gamma \in SU(2). \tag{2.6}
\]

bestimmt. Umgekehrt hätte man auch die von (2.3),(2.4) erzeugte \(C^*\)-Algebra \(A \) mit der Norm (2.6) als Ausgangspunkt nehmen und mit Hilfe des Gelfand-Naimark-Theorems \(A = C(S^2) \) zeigen können.

An dieser Stelle sind noch ein paar Bemerkungen angebracht. Zunächst einmal ist aus (2.6) unter Zuhilfenahme der Dreiecksungleichung und der Tatsache, dass aus \((c_+ - c_-)^2 + ab = 1 \|a\| \leq 1 \) folgt,

\[
\|a\| = 1
\]
zu schließen. Indem man \(a \) durch ein geeignetes Element aus \(SU(2) \) auf \(c_+ - c_- \) abbildet, zeigt man dann, mit etwas mehr Mühe, \(\|c_\pm\| = 1 \) und damit auch

\[
\|1 - ab\| = 1.
\]

Man könnte nun versucht sein, aus (2.3) auf \((c_+ - c_-) = \sqrt{1 - ab} \) zu schließen, und damit sowohl \(c_+ \) als auch \(c_- \) zu eliminieren. Die Wurzel als Potenzreihe konvergiert in \(A \), und \(1 - ab \) ist, wie man an

\[
\|1 - (1 - ab)\| = \|ab\| = \|a\|^2 = 1,
\]

1Es hätte natürlich genügt, eine dichte Untermenge von \(SU(2)/U(1) = S^2 \) zu verwenden.
erkennt, ein positives Element. \((c_+ - c_-)\) aber nicht, denn
\[
\|1 - (c_+ - c_-)\| = 2\|c_-\| = 2 > 1.
\]
Die Quadratwurzel ist natürlich immer als positives Element definiert. Hier wurde mehrfach die wohlbekannte Tatsache verwendet, dass ein selbstadjungiertes Element \(f\) einer unitalen \(C^*\)-Algebra positiv ist, wenn und nur wenn
\[
\|1 - \frac{f}{\|f\|}\| \leq 1.
\]
Auch ist keiner der vier Erzeuger invertierbar. Dies zeigt man am einfachsten durch die explizite Konstruktion von Charakteren, die auf dem jeweiligen Erzeuger verschwinden, wie, zum Beispiel, die durch
\[
\chi_{\pm}(c_{\pm}) = 0, \quad \chi_{\pm}(c_+) = 1 = \chi_{\pm}(a).
\]
definierten Charaktere, die offenbar die einzigen Charaktere mit \(\chi_{\pm}(c_{\pm}) = 0\) sind. Man kann sie zur Beschreibung von Karten auf \(S^2\), dem Raum der Charaktere, benutzen:
Im Folgenden sei die Gelfand-Transformierte von \(f \in \mathcal{A}\) mit \(\hat{f}\) bezeichnet. \((\hat{f}\) ist die durch
\[
\hat{f}(\chi) \overset{def}{=} \chi(f)
\]
definierte stetige Funktion auf dem Raum der reinen Zustände.) Dann ist die Abbildung
\[
z = \frac{\hat{a}}{2\hat{c}_-}, \quad \left(\bar{z} = \frac{\hat{b}}{2\hat{c}_-}\right). \tag{2.7}
\]
von \(S^2 \setminus \chi_-\) nach \(\mathbb{C}^2\) ein Homöomorphismus. Man kann also die Karte \((S^2 \setminus \chi_-, z)\) definieren. Analog definiert man \((S^2 \setminus \chi_+, \xi)\), mit
\[
\xi = \frac{\hat{b}}{2\hat{c}_+}, \quad \left(\bar{\xi} = \frac{\hat{a}}{2\hat{c}_+}\right),
\]
Im Überlapp der beiden Karten \(S^2 \setminus (\chi_+ \cup \chi_-)\) sind die lokalen Koordinaten \(z\) und \(\xi\) durch \(z\xi^* = 1\) verknüpft.
Es handelt sich natürlich um die üblichen komplexen Koordinaten auf \(S^2\). Geometrisch findet man sie mit einer stereographischen Projektion, also
\[
z = e^{i\varphi}\cot\frac{\theta}{2}, \quad \xi = e^{-i\varphi}\tan\frac{\theta}{2}. \tag{2.7}
\]
Im Hinblick auf (2.4) stellen \(c_+, c_-\) eine Zerlegung der Eins bezüglich dieser Karten dar. Das ist der wesentliche Grund beide mizuschleppen, was aber erst später ganz klar wird.
Mit Hilfe der Relationen (2.3), (2.4) kann man jedes \(f \in \mathcal{A}\) als
\[
f = \sum_{n,m=0}^{\infty} f_{nm}^+ a^m b^n e_+ + f_{nm}^- a^m b^n e_-
\]
zerlegen, wobei die Koeffizienten \(f_{nm}^+, f_{nm}^- \) durch \(f \) eindeutig bestimmt sind. Dies ist für technische Argumente manchmal hilfreich, zeigt aber auch, dass das Wachstumsverhalten von \(A \) dem einer Algebra mit zwei Erzeugern ohne Relationen entspricht, wie es für eine zweidimensionale Mannigfaltigkeit wie \(S^2 \) auch sein soll.

Im Allgemeinen wird man aber eine Zerlegung von \(f \in A \) in die Kugelflächenfunktionen, die homogene Polynome in \(a, b, c_+ - c_- \) sind, vorziehen. Dies wird Ausgangspunkt im nächsten Kapitel sein.

2.2 Die K-Theorie der Algebra \(C(S^2) \)

Im Gegensatz zum \(\mathbb{R}^2 \) ist das Tangentialbündel der Sphäre topologisch nichttrivial. Es gilt nun, diesen Sachverhalt in die algebraische Sprache zu übertragen. Es sei darauf hingewiesen, dass im folgenden nur glatte Funktionen betrachtet werden. Vorerst wird weiterhin das Symbol \(A \), nunmehr für glatte Funktionen, verwendet. Später wird dann etwas klarer zwischen glatten und stetigen Funktionen unterschieden.

Bekanntlich ist ein differenzierbares Vektorbündel \(E \xrightarrow{\pi} M \) über einer differenzierbaren Mannigfaltigkeit \(M \) durch eine weitere Mannigfaltigkeit \(E \) sowie eine stetige Projektion (eine Surjektion) \(\pi : E \to M \) gegeben, so dass das Urbild \(\pi^{-1}(m) \) jedes Punktes \(m \in M \) ein Vektorraum der festen Dimension \(r \) ist. Etwas anschaulicher ausgedrückt, ist \(E \) diejenige Mannigfaltigkeit, die entsteht, wenn in jedem Punkt der Mannigfaltigkeit \(M \) ein Vektorraum \(\mathbb{C}^r \) angeklebt wird. Damit ist das Bündel im Allgemeinen natürlich noch nicht eindeutig charakterisiert. Immerhin ist damit aber schon das triviale Bündel,

\[
E = M \times \mathbb{C}^r
\]

vollständig beschrieben. Lokal, das heißt in jeder offenen Menge \(U_i \) einer offenen Überdeckung \(\{U_i\}_{i=1,...,m} \) (\(M \) sei kompakt, dann ist \(m \) endlich) ist ein Vektorbündel per Definition immer trivialisierbar, das heißt es existieren Diffeomorphismen

\[
\phi_i : U_i \times \mathbb{C}^r \to \pi^{-1}(U_i)
\]

mit der Eigenschaft

\[
\pi(\phi_i(m, \theta)) = m \quad \forall m \in U_i.
\]

Insbesondere sind die \(\phi_i(m) \) bei festem \(m \) linear. Dann sind, in einem nichtleeren Überlapp \(U_i \cap U_j \) zweier Karten (bei festem \(m \in U_i \cap U_j \)) auch die Abbildungen

\[
t_{ij}(m) \overset{\text{def}}{=} \phi_i^{-1}(m)\phi_j(m)
\]

linear von \(\mathbb{C}^r \) nach \(\mathbb{C}^r \), also \(t_{ij} \in GL(r, \mathbb{C}) \). Darüber hinaus gelten die Konsistenzbedingungen

\[
\begin{align*}
t_{ii} &= 1, \\
t_{ji} &= t_{ij}^{-1}, \\
t_{ik}(m)t_{kj}(m) &= t_{ij}(m) \quad m \in U_i \cap U_k \cap U_j \neq \emptyset.
\end{align*}
\]
Diese Konsistenzbedingungen, zusammen mit der Differenzierbarkeit der $t_{ij}(m)$ in m, beschreiben gerade, dass die lokalen (trivialen) Bündel über den U_i, an den Schnitstellen $U_i \cap U_j$ differenzierbar zusammengeklebt sind.

Die strukturerhaltenden Abbildungen von (Vektor-)Bündeln, die Bündel-Morphismen, $E \xrightarrow{\pi} M$ und $E' \xrightarrow{\pi'} M$, sind durch ein Paar glatter Abbildungen (f, ρ), gegeben, so dass das Diagramm

\[
\begin{array}{ccc}
E & \xrightarrow{f} & E' \\
\downarrow{\pi} & & \downarrow{\pi'} \\
M & \xrightarrow{\rho} & M
\end{array}
\]

kommutiert. Anschaulich heißt das, dass f die Faser $\pi^{-1}(p)$ über einem Punkt $p \in M$ auf die Faser $\pi'^{-1}(\rho(p))$ über $\rho(p)$ abbildet.

Offenbar sind, bei gegebenem Bündel $E \xrightarrow{\pi} M$, die Übergangsmatrizen t_{ij} nur bis auf eine Basiswahl in den Fasern der lokalen Trivialisierung eindeutig. Darüber hinaus macht es auch keinen Sinn, Bündel, die stetig ineinander überführt werden können, zu unterscheiden, zumal ja auch die Wahl der offenen Umgebungen der lokalen Trivialisierung nicht eindeutig ist. Daher werden üblicherweise Äquivalenzklassen betrachtet. Zwei Bündel, $E \xrightarrow{\pi} M$ und $E' \xrightarrow{\pi'} M$, heißen äquivalent, wenn es einen Bündel-Morphismus (f, id_M), gibt, so dass das Diagramm

\[
\begin{array}{ccc}
E & \xrightarrow{f} & E' \\
\downarrow{\pi} & & \downarrow{\pi'} \\
M & \xrightarrow{\text{id}_M} & M
\end{array}
\]

kommutiert.

Um nun zu einer globalen, algebraischen Beschreibung eines Vektorbündels zu gelangen, betrachtet man die Schnitte in dieses Bündel. Ein (glatter) Schnitt ist eine glatte Abbildung $s : M \to E$, die $\pi \circ s = \text{id}_M$ erfüllt. Klärerweise ist $s(p)$ dann für jedes $p \in M$ ein Element der Faser $\pi^{-1}(p)$. Den Raum der glatten Schnitte bezeichnet man üblicherweise mit $\Gamma(M, E)$. Da man Schnitte punktweise mit Funktionen multiplizieren kann, hat $\Gamma(M, E)$ die Struktur eines \mathcal{A}-Moduls.

Ebenso wie das Bündel, ist auch ein Schnitt s zunächst einmal nur lokal, in der Form lokaler Schnitte $s_i := s|_{U_i}$, sinnvoll anzugeben. Hat das Bündel den Rang r, so gibt es in jeder der offenen Umgebungen U_i, $i = 1, \ldots, m$, der lokalen Trivialisierung des
Bündels, r linear unabhängige Schnitte $\sigma_i^{(q)}$, $q = 1, \ldots, r$, mit deren Hilfe der lokale Schnitt s_i als

$$s_i = a_q \sigma_i^{(q)}$$

zerlegt werden kann. Die Komponenten a_q sind dabei auf U_i glatte Funktionen. Da die s_i im Bündel leben, muss in einem nichtleeren $U_i \cap U_j$ natürlich auch

$$s_i = t_{ij} s_j$$

(2.8)
gelten, wobei nicht über j summiert wird. Ein globaler Schnitt s wird dann also durch das m-Tupel (s_1, \ldots, s_m) beschrieben, so dass (2.8) erfüllt ist.

Der erste Schritt zu einer “Globalisierung” der Schnitte, besteht darin, die lokalen Schnitte s_i in global wohldefinierte Objekte zu verwandeln. Dazu verwendet man eine Zerlegung $\psi_1 + \cdots + \psi_m = 1$ der Eins, supp $\psi_i \subseteq U_i$, die man so wählt, dass sie zudem für alle i $\psi_i \geq 0$ erfüllt. Dann sind die Komponenten von $v_i := \sqrt{\psi_i} s_i$ auf ganz M glatte Funktionen, welche allerdings außerhalb von U_i verschwinden. Natürlich sind die v_i keine Schnitte in das betreffende Bündel, denn (2.8) gilt für sie nicht. Allerdings gilt stattdessen

$$v_i = \left(\sqrt{\psi_i} t_{ij} \sqrt{\psi_j}^{-1} \right) v_j.$$

Es ist auch offensichtlich, dass in jedem Punkt nur r der v_i linear unabhängig sein können. Schreibt man wieder das Tupel (v_1, \ldots, v_m), das ja nun in jedem Punkt als Vektor eines \mathbb{C}^m wohldefiniert ist, so muss es einen Projektor p vom Rang r auf \mathbb{C}^m geben, mit $p(v_1, \ldots, v_m) = (v_1, \ldots, v_m)$ für alle so aus den Schnitten des Bündels konstruierten (v_1, \ldots, v_m). Da dies in jedem Punkt der Fall sein muss, ist zu erwarten, dass sich p zu einem Element aus $M_r(\mathcal{A})$, den $n \times n$-Matrizen mit $(n = mr)$ Einträgen aus \mathcal{A} fortsetzt. Man prüft leicht nach, dass dies tatsächlich der Fall ist. Explizit sind die Einträge von p dann als

$$p_{ij} = \sqrt{\psi_i} t_{ij} \sqrt{\psi_j}$$

gegeben:

$$\sum_j \left(\sqrt{\psi_i} t_{ij} \sqrt{\psi_j} \right) v_j = \sum_j t_{ij} \frac{\sqrt{\psi_i} \psi_j s_j}{\sqrt{\psi_i} t_{ij} \psi_j s_i} = \left(\sum_j \psi_j \right) \sqrt{\psi_i} s_i = v_i.$$

Da der Übergang s_i nach v_i offensichtlich umkehrbar ist, hat man dann gezeigt, dass $\Gamma(M, E)$ als \mathcal{A}-Modul isomorph zu

$$\mathcal{E} = p\mathcal{A}^n$$
ist. Einen \mathcal{A}-Modul dieser Form (mit $p^2 = p \in M_n(\mathcal{A})$) nennt man einen **endlich erzeugten projektiven Modul**. Umgekehrt kann aus einem solchen endlich erzeugten projektiven Modul stets ein eindeutig bestimmtes Vektorbündel rekonstruiert werden. (Dabei ist die Faser über jedem Punkt als $p \mathbb{C}^n$ konstruiert.) Dies ist das bekannte **Serre-Swan Theorem**.

Die Äquivalenz zweier – durch Projektoren p, q beschriebener – Bündel übersetzt sich dann in die unitäre Äquivalenz dieser Projektoren. Es ist dabei sehr wichtig zu beachten, dass Projektoren, die dasselbe Bündel beschreiben, keineswegs in derselben Matrix-Algebra über \mathcal{A} liegen müssen. Es ist schliesslich durchaus möglich zur Beschreibung des gleichen Bündels eine unterschiedliche Anzahl von Karten zu verwenden. (Dass ist ja auch einer der Gründe für den Begriff der Äquivalenz von Bündeln.)

Definition 2.2.1. Zwei Projektoren $p \in M_n(\mathcal{A})$ und $q \in M_m(\mathcal{A})$ heißen äquivalent, $p \sim q$ wenn ein unitäres Element $u \in M_{m+n}(\mathcal{A})$ existiert, mit

$$
\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} = u \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix} u^*.
$$

Eine elegantere, dazu äquivalente Definition, die in der Praxis oft nützlicher ist, beruht auf dem Begriff der partiellen Isometrie.

Proposition 2.2.2. Es ist $p \sim q$ genau dann, wenn eine $(n \times m)$-Matrix v mit Einträgen aus \mathcal{A} existiert, so dass

$$p = vv^*, \quad \text{und} \quad q = v^* v$$

ist.

Wenn man nur an den topologischen Eigenschaften eines Raumes interessiert ist, so ist es darüber hinaus ratsam, statt der Äquivalenzklassen, nur die **stabilen Äquivalenzklassen** von Vektorbündeln zu betrachten. Zwei (äquivalente) Bündel E, E' über M heißen dabei stabil äquivalent, wenn es triviale Bündel F, F' über M gibt, so dass die Summenbündel $E \oplus F$ und $E' \oplus F'$ äquivalent sind. Die Summe ist dabei als direkte Summe der Fasern, die ja Vektorräume sind, über jedem Punkt zu verstehen. Diese stabilen Äquivalenzklassen bilden – mit der Summe \oplus von Vektorbündeln als Verknüpfung – eine abelsche Gruppe $K_0(\mathcal{A})$. Die algebraische Konstruktion von $K_0(\mathcal{A})$, auf der Ebene der C^*-Algebren und projektiven Moduln, verläuft dann wie folgt: Die Whitney-Summe $E \oplus F$ übersetzt sich in die algebraische Sprache als

$$[p] \oplus [q] \cong [\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}],$$

was schon in der obigen Definition verwendet wurde. Eine Differenz von Äquivalenzklassen ist aber noch nicht definiert. Anders ausgedrückt, gibt es unter der Verknüpfung \oplus von projektiven Moduln nicht zu jedem Element ein Inverses. Um dieses
formal zu definieren, verdoppelt man zunächst den Raum der Äquivalenzklassen von Vektorbündeln, das heißt man betrachtet Zwei-Tupel \([p], [q]\) von solchen Äquivalenzklassen, mit der nahe liegenden Definition der Summe

\[
([p], [q]) \oplus ([p]', [q]') \overset{\text{def}}{=} ([p] \oplus [p]', [q] \oplus [q]')
\]

Dann definiert man eine neuerliche Äquivalenzrelation, indem man zwei solche Tupel \([p], [q]\) und \([p]', [q]'\) äquivalent nennt, wenn es eine triviale Äquivalenzklasse \([r]\) gibt (analog zum trivialen Bündel vom Rang \(r\)), so dass

\[
[p] \oplus [q] \oplus [r] = [q] \oplus [p]' \oplus [r]
\]

ist. Nach Abdivision dieser Äquivalenzrelation entsteht dann die Gruppe \(K_0(\mathcal{A})\) wobei man sich die Elemente \([p], [q]\) als formale Differenzen \([p] - [q]\) vorstellen kann. Die abdividierte Äquivalenzrelation besagt gerade, dass diese Differenzen eindeutig definiert sind. Insbesondere ist dann nämlich für alle Klassen \([p]\) von Bündeln

\[
([p], [p]) \sim ([0], [0])
\]

und somit

\[
([p], [0]) \oplus ([0], [p]) \sim ([0], [0]).
\]

Alle Klassen \(([p], [q])\) sind folglich äquivalent zu einer Klasse der Form \(([r], [0])\) oder aber zu einer Klasse \(([0], [r])\). Der Grund für diese sogenannte Grothendieck-Konstruktion, also die Konstruktion einer Gruppe, liegt in den verbesserten (funktoriellen) Eigenschaften von \(K_0(\mathcal{A})\) gegenüber der Halbgruppe der (Äquivalenzklassen von) Vektorbündeln. Für das Weitere ist aber nur eine dieser Eigenschaften, die Homotopie-Invarianz, von Bedeutung:

Zwei (Klassen von) Projektoren \([p] \in M_n(\mathcal{A})\) und \([q] \in M_m(\mathcal{A})\), die in offensichtlicher Weise in \(M_{m+n}(\mathcal{A})\) eingebettet werden, heißen dabei Homotopie-äquivalent, wenn man sie, bildlich gesprochen, innerhalb der Projektoren in \(M_{m+n}(\mathcal{A})\) ineinander deformieren kann. Es ist wohlbekannt, dass für solche Homotopie-äquivalenten Projektoren stets \(([p], [0]) \sim ([q], [0])\) ist. Sie definieren also dieselbe Klasse in \(K_0(\mathcal{A})\).

(Die übrigen Eigenschaften kann man den angegebenen Lehrbüchern [At1][WO] entnehmen, ebenso wie die allgemeine Formulierung der Homotopie-Äquivalenz. Die obigen Andeutungen beschreiben nämlich nur einen Spezialfall.)

Für die Sphäre ist

\[
K_0(\mathcal{A}) = \mathbb{Z} \oplus \mathbb{Z}
\]

ein wohlbekanntes Resultat. \(K_0(\mathcal{A})\) ist stets ein Modul über \(\mathbb{Z}\); Weil man Äquivalenzklassen von Vektorbündeln mit sich selbst addieren (und subtrahieren) kann, ist auch das Produkt einer solchen Klasse mit einer ganzen Zahl wohldefiniert. Multipliziert man zum Beispiel ein Bündel vom Rang Eins mit einer positiven ganzen Zahl \(n\), erhält man ein Bündel vom Rang \(n\).

Für die Sphäre bilden deshalb die Linienbündel, also solche Bündel mit \(r = \text{Rang } p = 1\) eine Basis (über \(\mathbb{Z}\)) von \(K_0(\mathcal{A})\).
Explizite Repräsentanten für jede Äquivalenzklasse in $K_0(\mathcal{A})$, die man natürlich nur auf den Linienbündeln angeben muss, sind wohlbekannt (siehe [Rio], [Monsaraz]). Es reicht dabei, in $M_2(\mathcal{A})$ zu arbeiten, weil dies bereits Repräsentanten für jede Äquivalenzklasse ergibt. Die oben zitierten Ergebnisse sind allerdings in einer lokalen Sprache formuliert. Um zu einer globalen Beschreibung zu gelangen, muss man daher neue Repräsentanten angeben.

Jedes Element $p \in M_2(\mathcal{A})$, kann als

$$p = \frac{1}{2} (n_0 \mathbb{1} + \bar{n}\sigma)$$

mit Algebra-Elementen $n_k \in \mathcal{A}$, parametriert werden, wobei, wie üblich, σ_i die drei Pauli-Matrizen bezeichnet. Wie man leicht nachrechnet ist p ein selbstadjungierter Projektor vom Rang Eins, also

$$p^* = p = p^2 \quad \text{Spur} \; p = 1$$

dann und nur dann wenn das Quadrupel von Algebra-Elementen $n_0, \bar{n} \in \mathcal{A}^3$ den Bedingungen

$$n_0 = 1, \quad n_i^* = n_i, \quad \sum_{i=1}^{3} n_i^2 = 1$$

genügt. Im Fall der Sphäre $\mathcal{A} = C(S^2)$ ist $\bar{n} \in \mathcal{A}^3$ also eine stetige Abbildung $S^2 \to S^2$.

Als Folge der Homotopie-Invarianz der K-Theorie entsprechen die Äquivalenzklassen von Linienbündeln genau den Homotopieklassen solcher Abbildungen, welche gerade durch eine ganze Zahl n, die Windungszahl, charakterisiert sind. Die Aufgabe besteht also darin, zu jeder ganzen Zahl n, eine stetige Abbildung $S^2 \to S^2$ mit Windungszahl n zu finden. Für $n > 0$, sind solche Abbildungen in lokalen Koordinaten durch

$$\bar{n} = \left(\begin{array}{c} \sin \varphi \sin(n\theta) \\ \cos \varphi \sin(n\theta) \\ \cos(n\theta) \end{array} \right)$$

gleichen. Zur Übertragung der Komponenten von \bar{n} in algebraische (globale) Ausdrücke sind die folgenden homogenen Polynome nützlich

$$P_{ger}(n) = \sum_{k \; \text{gerade}} (-1)^{\frac{k}{2}} \binom{n}{k} (c_+ - c_-)^{n-k} (ab)^{\frac{k}{2}}$$

$$P_{ung}(n) = \sum_{k \; \text{ungerade}} (-1)^{\frac{k-1}{2}} \binom{n}{k} (c_+ - c_-)^{n-k} (ab)^{\frac{k-1}{2}}, \quad (2.9)$$

die einfach die Entwicklungen von $\cos(n\theta) = \tilde{P}_{ger}$ und $e^{i\varphi} \sin(n\theta) = \tilde{a} \tilde{P}_{ung}(n)$ sind. Deshalb ist auch

$$P_{ger}(n)^2 + abP_{ung}(n)^2 = 1$$
und beide sind selbstadjungiert. Die Projektoren, welche die Klasse \([1, n]\) (1 ist der Rang, \(n\) die Windungszahl) repräsentieren, sind dann einfach als

\[
p_{+n} = \frac{1}{2} \begin{pmatrix} 1 + P_{ger}(n) & aP_{ung}(n) \\ bP_{ung}(n) & 1 - P_{ger}(n) \end{pmatrix}
\]

zu schreiben. Für negative \(n\) (\(n = 0\) ist das triviale Bündel mit \(p = 1 \in \mathcal{A}\)) nimmt man

\[
p_{-n} = \frac{1}{2} \begin{pmatrix} 1 + P_{ger}(n) & bP_{ung}(n) \\ aP_{ung}(n) & 1 - P_{ger}(n) \end{pmatrix}.
\]

Es ist eigentlich klar, dass die Projektoren \(p_{\pm n}\) alle Linienbündel – also jede Windungszahl \(k \in \mathbb{Z}\) – über der Sphäre beschreiben. Zur Sicherheit, und weil die entsprechenden Formeln später ohnehin benötigt werden, soll dies nun aber auch noch mit Hilfe der Chern-Zahl

\[Ch(p_{\pm n}) = \int_{S^2} ch_2(p_{\pm n})\]

der durch die Projektoren \(p_{\pm n}\) beschriebenen Bündel demonstriert werden. (Die Chern-Zahl ist ja bekanntermaßen das \((2\pi i)\)-fache der Windungszahl eines Linienbündels.) Hierbei ist

\[ch_2(p_{\pm n}) = \text{Tr}(p_{\pm n} \, dp_{\pm n} \, dp_{\pm n}),\]

und für \(n \geq 0\) berechnet man leicht (in den oben verwendeten lokalen Koordinaten \((\theta, \varphi)\))

\[dp_n = \frac{1}{2} \begin{pmatrix} -n \sin(n\theta) & \cos(n\theta) & e^{i\varphi} \\ (i \cos(n\theta) & \sin(n\theta) & i\varphi) & e^{-i\varphi} \\ n \sin(n\theta) & \cos(n\theta) & -i\varphi \end{pmatrix} \].

Damit (und dem analogen Ausdruck für \(n < 0\)) folgt dann nach kurzer Rechnung

\[ch_2(p_{\pm n}) = \pm \frac{n}{2} \sin \theta d\varphi \wedge d\theta.
\]

Insbesondere, für \(n = 1\), ist somit der berühmte Bott-Projektor

\[p_{+1} = \begin{pmatrix} c_+ & \frac{a}{b} \\ \frac{b}{a} & c_- \end{pmatrix},
\]

global beschrieben. Er ist (lokal) bezüglich der Zerlegung der Eins \(c_+, c_-\) definiert, mit Übergangsfunktionen

\[f_{+\mp} = \frac{a}{2\sqrt{c_+ c_-}} = \frac{\sqrt{a}}{\sqrt{b}} (= e^{i\varphi}) = f_{-+}^{-1},\]

welche natürlich nur im Überlapp der beiden Karten wohldefiniert sind.

Die Moduln \(p_{\pm n}, A^2\) werden in der Folge stets mit \(E_{\pm n}\) bezeichnet. Das durch den Bott-Projektor \(p_1\) beschriebene Bündel wird in der Literatur (und hier) als Hopf-Bündel bezeichnet.

Da das Spin-Bündel über der Sphäre, welchem im nächsten Kapitel eine zentrale Rolle zukommen wird, als

\[\mathcal{S} = \mathcal{S}_{+1} \oplus \mathcal{S}_{-1},\]
Die K-Theorie der Algebra

gegeben ist, ist es sicher notwendig, die Struktur des Moduls \mathcal{E}_{+1} detaillierter zu untersuchen. Bevor die tatsächliche Struktur angegeben wird, mag die folgende Proposition einen Eindruck von der Komplexität dieses Problems für allgemeine Moduln geben.

Proposition 2.2.3. Sei $\sigma = \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right) \in \mathcal{E}_{+1}$. Dann gilt:

1. Es genügt f_1 anzugeben, dann ist f_2 eindeutig durch $(1 - p_{+1})\sigma = 0$ bestimmt.
2. Analog zu 1., ist σ durch f_2 eindeutig bestimmt.
3. f_1 kann weder 1, noch c_-, noch b sein.
4. f_2 ist nicht 1, c_+ oder a.
5. Es existiert $\chi \in S^2$ mit $\chi(f_1) = \chi(f_2) = 0$.

Der einfache Beweis basiert auf den Gelfand-Transformierten der Erzeuger. 5. besagt einfach, dass es keine nirgends verschwindenden Schnitte des nichttrivialen Hopf-Bündels gibt. (Zum Beweis dieser Aussage betrachtet man die beiden Basisschnitte σ_{\pm}, die weiter unten definiert werden.)

Jedes Element $\sigma \in \mathcal{E}_{+1}$ kann als

$$\sigma = \sigma_+ s^+ + \sigma_- s^-,$$

geschrieben werden, wobei

$$\sigma_- = \left(\begin{array}{c} c_+ \\ b \\ \frac{a}{2} \end{array} \right), \quad \sigma_+ = \left(\begin{array}{c} a \\ c_- \\ \frac{b}{2} \end{array} \right).$$

(2.13)

Weil det $p = 0$, sind σ_+, σ_- nicht unabhängig über A (über \mathbb{C} sind sie es):

$$\frac{a}{2}\sigma_- - c_+ \sigma_+ = c_- \sigma_- - \frac{b}{2}\sigma_+ = 0.$$

(2.14)

Diese Gleichungen lassen sich aber nicht auflösen, die Erzeuger sind ja nicht invertierbar. Andernfalls wäre \mathcal{E}_{+1} ein freier Modul, beschriebe also die Schnitte in ein triviales Bündel. Dementsprechend sind, bei gegebenem σ die Algebra-Elemente s^+, s^- auch nicht eindeutig bestimmt. Man kann aber zu einer eleganten Beschreibung der Schnitte $\sigma \in \mathcal{E}_{+1}$ gelangen, wenn man die Symmetrie-Eigenschaften des Hopf-Bündels ausnutzt.

Ein Vektor-Bündel $E \xrightarrow{\pi} M$ heißt G-homogen (für eine Lie-Gruppe G), wenn es ein Paar (τ, ρ) von Gruppenwirkungen gibt, die für jedes $g \in G$ einen Bündel-Morphismus $\tau(g), \rho(g))$ darstellen, so dass das Diagramm

$$
\begin{array}{ccc}
E & \xrightarrow{\tau(g)} & E \\
\pi \downarrow & & \downarrow \pi \\
M & \xrightarrow{\rho(g)} & M
\end{array}
$$
Von der lokalen zur globalen Beschreibung der Sphäre

kommen.
Ganz analog definiert man:

Definition 2.2.4. Ein (endlich erzeugter projektiver) \(\mathcal{A} \)-Modul \(\mathcal{E} \) heißt \(G \)-homogen, wenn es ein Paar von Gruppenwirkungen \((\tau, \rho)\) gibt, so dass dasDiagramm

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\tau(g)} & \mathcal{E} \\
\downarrow & & \downarrow \\
\mathcal{E} \otimes \mathcal{A} & \xrightarrow{\tau(g) \otimes \rho(g)} & \mathcal{E} \otimes \mathcal{A}
\end{array}
\]

für alle \(g \in G \) kommutiert, und \(\rho(g) \) ein Algebra-Automorphismus, \((\tau(g))\) linear über \(\mathbb{C} \) ist.

Auf die Lie-Algebra \(\mathfrak{g} \) von \(G \) übertragen, bedeutet dies (für das Hopf-Bündel) die Existenz einer Wirkung von \(\mathfrak{g} \) auf \(\mathcal{E} \) der Form

\[
J_t = \text{id}_{\mathcal{E}} \otimes L_t + \tau_t \otimes \text{id}_{\mathcal{A}},
\]

auf Schnitte \(\sigma = \sigma_+ \otimes s^+ + \sigma_- \otimes s^- \).

Gesucht ist also nur noch die lineare Wirkung \(\tau_t \) auf die beiden Schnitte \(\sigma_{\pm} \). Wohldefiniertheit der \(\tau_t \) verlangt dann, dass die Abhängigkeit (2.14) dieser Schnitte über \(\mathcal{A} \) respektiert wird. Gem einsam mit den Vertauschungsrelationen der \(su(2) \) fixiert diese Bedingung sie eindeutig. Man findet

\[
\tau_3 \sigma_{\pm} = \pm \frac{1}{2} \sigma_{\pm},
\]

was gleichzeitig die Notation erklärt. Zum Beispiel ist dann

\[
J_3 \left(\frac{a}{2} \sigma_- - c_+ \sigma_+ \right) = \frac{a}{2} \sigma_- - \frac{1}{2} a \sigma_- - \frac{1}{2} c_+ \sigma_+ = 0,
\]

und ähnlich für \(J_{\pm} \), und die weitere Gleichung in (2.14).

Es sollte noch einmal betont werden, dass die Existenz einer solchen Wirkung keine spezielle Eigenschaft des Hopf-Bündels (und des dazu konjugierten Bündels \(\mathcal{E}_{\pm} \)) ist. Alle Linienbündel über der Sphäre sind \(SU(2) \)-homogen. Diese Tatsache wird im nächsten Abschnitt herausgearbeitet.

Durch die Zerlegung von \(\mathcal{E}_{\pm} \) in irreduzible \(SU(2) \)-Darstellungen gelangt man so zu einer Basis über \(\mathbb{C} \) von \(\mathcal{E}_{\pm} \). Für das vollständige Spinbündel \(\mathcal{F} = \mathcal{E}_{+1} \oplus \mathcal{E}_{-1} \) ist das aber etwas einfacher als für \(\mathcal{E}_{\pm} \) allein.

2.3 Das reelle Spinbündel

Dem aufmerksamen Leser wird sicher nicht entgangen sein, dass sich die angegebenen Repräsentanten in \(K_0(\mathcal{A}) \) unter anderem durch die Eigenschaft

\[
p_{+n,ij} = p_{-n,ij} \quad i, j = 1, 2
\]
2.3 Das reelle Spinbündel

auszeichnen. Falls \(\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \) also in \(\mathcal{E}_{+n} \) existiert, so ist das konjugierte Element \(\begin{pmatrix} f_1^* \\ f_2^* \end{pmatrix} \) in \(\mathcal{E}_{-n} \) vorhanden. Das gibt bereits ein erstes Bild von denjenigen Bündeln vom Rang zwei, welche möglicherweise als Spinor-Bündel dienen können:

Die Spin-Gruppe in zwei euklidischen Dimensionen, \(U(1) \), wird von

\[
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\]

das zugleich als Graduierung (Chiralität) \(\gamma \) dienen muss, erzeugt. Eine wohldefinierte Wirkung existiert also nur auf Moduln der Form \(\mathcal{E}_{+n} \oplus \mathcal{E}_{-n} \), sowie auf den getwisteten Moduln \(\mathcal{E}_k \otimes (\mathcal{E}_{+n} \oplus \mathcal{E}_{-n}) \), wenn die Wirkung auf \(\mathcal{E}_k \) trivial ist. Die getwisteten Moduln erfüllen allerdings \(\mathcal{E}_k \otimes (\mathcal{E}_{+n} \oplus \mathcal{E}_{-n}) = \mathcal{E}_{k+n} \oplus \mathcal{E}_{k-n} \) und das ergibt dann den allgemeinsten Modul vom Rang 2.

Es ist aber bekannt, dass das einzige reelle Spinbündel über der Sphäre als

\[
\mathcal{S} = \mathcal{E}_{+1} \oplus \mathcal{E}_{-1}
\]
gegeben ist. In diesem Fall wird dann also die Realitätsstruktur (Ladungskonjugation)

\[
J \begin{pmatrix}
\psi_+ \\
\psi_-
\end{pmatrix} = \begin{pmatrix}
-\psi_-^* \\
\psi_+^*
\end{pmatrix} \quad \psi_+ \in \mathcal{E}_{+1}, \quad \psi_- \in \mathcal{E}_{-1}
\]

mit dem Dirac-Operator vertauschen.

Weil das Ziel dieses Kapitels ausschließlich darin besteht, die Spin-Geometrie der Sphäre in die globale Sprache der Nichtkommutativen Geometrie zu übersetzen, wird in der Folge ausschließlich mit diesem Bündel gearbeitet. Eine systematische Herleitung dieser Geometrie folgt im nächsten Kapitel.

Es muss betont werden, dass auf \(\mathcal{S} \) zwar der Erzeuger der Spingruppe, \(\gamma \) global wohldefiniert ist, eine ähnliche Wirkung der beiden anderen Pauli-Matrizen existiert aber nicht. (Zum Beispiel wäre ja \(\sigma_2 \) nebdiaogonal mit Eintrag 1. Sie würde daher die beiden inäquivalenten Bündel \(\mathcal{E}_{+1} \) aufeinander abbilden, was in dieser Weise offensichtlich nicht wohldefiniert ist.) Im nächsten Kapitel wird das Cliffordbündel, und damit die Clifford-Wirkung, mit Hilfe der Differentialalgebra konstruiert.

Um die Struktur von \(\mathcal{S} \) auszuarbeiten muss man nur

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\begin{pmatrix}
c_+ \\
c_-
\end{pmatrix}
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
c_- \\
c_+
\end{pmatrix}
= 1 - p_{+1}
\]

bemerken. Folglich ist \(\mathcal{E}_{-1} \), genau wie \(\mathcal{E}_{+1} \), ein \(SU(2) \)-homogener Modul, wobei \(\tau_i \) durch

\[
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\tau_i
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\]

ersetzt ist. Darüber hinaus ist ihre direkte Summe, also \(\mathcal{S} \), ein freier Modul,

\[
\mathcal{S} \cong \mathcal{A}_2^1,
\]
und damit als $SU(2)$-Darstellung äquivalent zu
\[
\mathcal{S} \cong V^1 \otimes \mathcal{A} = \bigoplus_{k=0}^{\infty} \left(V^{\frac{1}{2}} \otimes V^k \right) = \left(\bigoplus_{k=0}^{\infty} V^{2k+1} \right) \oplus \left(\bigoplus_{k=0}^{\infty} V^{2k+1} \right),
\]
wo\(V^j \) die $(2j + 1)$-dimensionale irreduzible Darstellung von $SU(2)$ bezeichnet.
Man zeigt auch leicht, dass $\mathcal{S}_-, \mathcal{S}_+$ äquivalente $SU(2)$-Darstellungen bilden. Daher gilt dann auch
\[
\mathcal{S}_- \cong \bigoplus_{k=0}^{\infty} V^{2k+1}.
\]

Der Vollständigkeit halber sei die aus den sogenannten ”spinor harmonics“ gebilde-\(t\)e Basis von \mathcal{S} noch kurz angeführt. In lokalen, komplexen Koordinaten sind diese (beiden) von Penrose und Goldberger [GP] entdeckten Funktionenserien für \(l = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \) und \(m \in \{-l, -l+1, \ldots, l-1, l\} \) als
\[
Y^+_{l,m}(z, \overline{z}) = C_{l,m} \frac{1}{(1 + z \overline{z})^{l+\frac{1}{2}}} \sum_{r-s=m+\frac{1}{2}} \left(l - \frac{1}{2} \overline{r} \right) \left(l + \frac{1}{2} s \right) z^r (-\overline{z})^s,
\]
und
\[
Y^-_{l,m}(z, \overline{z}) = C_{l,m} \frac{1}{(1 + z \overline{z})^{l+\frac{1}{2}}} \sum_{r-s=m+\frac{1}{2}} \left(l + \frac{1}{2} \overline{r} \right) \left(l - \frac{1}{2} s \right) z^r (-\overline{z})^s,
\]
in den üblichen komplexen Koordinaten $z = \frac{\theta}{2\pi}$, gegeben. (Analoge Ausdrücke gelten dann in der anderen Karte, mit den Koordinaten ξ.) Die Koeffizienten $C_{l,m}$ lauten explizit
\[
C_{l,m} = (-1)^{l-m} \sqrt{\frac{2l+1}{4\pi}} \frac{(l+m)!(l-m)!}{(l+\frac{1}{2})!(l+1)!(l-\frac{1}{2})!}.
\]
Physikalisch kann man diese Schnitte in ein topologisch nichttriviales Bündel als (skalar) Wellenfunktionen eines sonst freien Teilchens im Feld eines magnetischen Monopols im Zentrum der Sphäre interpretieren. [GB][PAM-D]

Mit Hilfe der ”spinor harmonics“ lassen sich die entsprechenden Eigenschnitte der Operatoren J_3 und J^2 dann gemäß
\[
\chi^+_l(m) = Y^+_{l,m} \begin{pmatrix} z \\ 1 \end{pmatrix},
\]
für \mathcal{S}_+, beziehungsweise
\[
\chi^-_l(m) = Y^-_{l,m} \begin{pmatrix} z \\ 1 \end{pmatrix},
\]
für \mathcal{S}_-, angeben.
Man kann sich leicht vorstellen, dass es nicht ganz einfach ist, diese Ausdrücke abzuleiten. Noch unangenehmer ist es aber, ihre naive Übersetzung in die algebraische Sprache mit durchzuführen. Das ist zum Glück aber auch gar nicht notwendig.

\[\mathcal{E}_{\pm 1} = p_{\pm 1} \mathcal{A}^2 \]

ist der Unterraum (von \(\mathcal{A}^2 \)) der Schnitte im Kern von

\[
1 - p_{\pm 1} = \begin{pmatrix}
 c_- & -\frac{q}{2} \\
 -\frac{q}{2} & c_+
\end{pmatrix}.
\]

Wie oben angegeben, läßt sich \(\mathcal{A}^2 \) gemäß

\[
\mathcal{A}^2 \cong V^\frac{1}{2} \otimes \mathcal{A} = \bigoplus_{k=0}^{\infty} V^{\frac{k+1}{2}},
\]

in irreduzible Darstellungen zerlegen. Demzufolge können die Eigenfunktionen \(\chi_{l,m}^+ \) (und analog die \(\chi_{l,m}^- \)) wie jeder beliebige Vektor in \(\mathcal{A}^2 \) als

\[
\begin{align*}
\chi_{l,m}^+ &= A_l^- \sqrt{\frac{l+m}{2l}} Y_{l-m}^m \begin{pmatrix}
0 \\
1
\end{pmatrix} \\
&\quad + A_l^- \sqrt{\frac{l-m}{2l}} Y_{l+m}^m \begin{pmatrix}
1 \\
0
\end{pmatrix} \\
&\quad - A_l^+ \sqrt{\frac{l-m+1}{2l+2}} Y_{l-m+\frac{1}{2}}^m \begin{pmatrix}
0 \\
1
\end{pmatrix} \\
&\quad + A_l^+ \sqrt{\frac{l+m+1}{2l+2}} Y_{l+m+\frac{1}{2}}^m \begin{pmatrix}
1 \\
0
\end{pmatrix}
\end{align*}
\]

zerlegt werden, wobei schon die entsprechenden Clebsch-Gordan-Koeffizienten eingesetzt wurden. Damit sind die \(\chi_{l,m}^+ \) aber noch nicht automatisch in \(\mathcal{E}_{\pm 1} \). Dazu muss ja \((1 - p_{\pm 1}) \chi_{l,m}^+ = 0 \) gelten, und dies schränkt die Wahl der bisher noch unbestimmten Koeffizienten \(A_l^\pm \) ein:

Es ist zunächst einmal eine bekannte (und leicht zu beweisende) Tatsache, dass

\[
\begin{align*}
a Y_l^m &= \sqrt{\frac{(l+m+1)(l+m+2)}{(2l+3)(2l+1)}} Y_{l+m+1}^{m+1} \\
&\quad - \sqrt{\frac{(l-m)(l-m-1)}{(2l-1)(2l+1)}} Y_{l-m-1}^{m+1} \\
b Y_l^m &= -\sqrt{\frac{(l-m+1)(l-m+2)}{(2l+3)(2l+1)}} Y_{l+m-1}^{m-1} \\
&\quad + \sqrt{\frac{(l+m)(l+m-1)}{(2l-1)(2l+1)}} Y_{l-m-1}^{m-1} \\
c_{\pm} Y_l^m &= \pm \frac{1}{2} Y_l^m \pm \frac{1}{2} \sqrt{\frac{(l+m+1)(l-m+1)}{(2l+3)(2l+1)}} Y_{l+m+1}^m \\
&\quad \pm \frac{1}{2} \sqrt{\frac{(l+m)(l-m)}{(2l-1)(2l+1)}} Y_{l-m}^m
\end{align*}
\]

(2.15)
und damit kann man \((1 - p_{+1}) \xi^{l,d}_{i} \), (was am einfachsten) ist, berechnen. Die resultierende Bedingung an die \(A^\pm_i \) wird dann ganz einfach
\[A^+_i = A^-_i. \]
Der verbleibende Koeffizient \(A^-_i \) entspricht nur einer Normierung von \(\chi^{l,m}_{+} \). Es ist allerdings (noch) kein Skalarprodukt vorhanden, bezüglich dessen Normierungen definiert sein könnten, so dass dieser Koeffizient (vorläufig) willkürlich als \(A^-_i = 1 \) gewählt wird. Zum Beispiel ist dann
\[\sqrt{4\pi} \xi^{\frac{1}{2}} = \begin{pmatrix} 1 \\ 0 \\ c \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix} + \begin{pmatrix} c \\ 0 \end{pmatrix} = 2\sigma_- \]
(wenn man die korrekte Normierung der Kugelflächenfunktionen (2.5) benutzt).
Ganz analog kann man auch für \(\delta_{-1} \) vorgehen. Hier ist aber zu beachten, dass \(p_{-1} = \sigma_2(1 - p_{+1})\sigma_2^{-1} \neq (1 - p_{+1}) \) ist. Zur Berechnung der Gleichungen für \(\delta_{-1} \) führt man deshalb am besten zuerst einen Basiswechsel vermittels \(\sigma_2 \) durch. Dann ist \(\chi^{l,m}_{-} \) in der neuen Basis als
\[\chi^{l,m}_{-} = -B^+_i \sqrt{\frac{l - m}{2l}} Y^{m - \frac{1}{2}}_{l - \frac{1}{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + B^+_i \sqrt{\frac{l + m}{2l}} Y^{m + \frac{1}{2}}_{l + \frac{1}{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} - B^+_i \sqrt{\frac{l + m + 1}{2l + 2}} Y^{m - \frac{1}{2}}_{l + \frac{1}{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - B^+_i \sqrt{\frac{l - m + 1}{2l + 2}} Y^{m + \frac{1}{2}}_{l + \frac{1}{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
anzusetzen, wobei für die Glebsch-Gordan Zerlegung die Darstellung der \(\tau_i \) in der neuen Basis zu berücksichtigen ist. Die Zugehörigkeit zu \(\delta_{-1} \) verlangt dann
\[B^+_i = B^-_i. \]
Mit diesen Eigenfunktionen bewaffnet, könnte man sich nun an die Definition des Dirac-Operators heranwagen. Ganz einfach ist diesem Problem aber nicht beizukommen, weil eine Cliffordwirkung immer noch nicht gefunden ist. Für die Sphäre muss aber der Laplace-Operator, als unter Drehungen invarianter Differentialoperator zweiter Ordnung, von der Form
\[\triangle = (a L^2 + b) \mathbb{1}_2 \]
sein, wobei die zweidimensionale Einheitsmatrix andeutet, dass dieser Operator auf \(\mathcal{S} = A^2 \) wirkt. (Der klassische Laplace-Operator entspricht der Wahl \(a = 1, b = -\frac{1}{4} \).)
Der Dirac-Operator \(D \) muss ebenfalls invariant, oder besser: äquivariant sein, in dem Sinne, dass er mit den Generatoren vertauscht. Dann ist er als
\[D = \sigma^i L_i + \frac{1}{2} \mathbb{1}_2 = \begin{pmatrix} L_3 + \frac{1}{2} \sqrt{2}L_- \\ \sqrt{2}L_+ -L_3 + \frac{1}{2} \end{pmatrix} \]
gegeben, so dass auch die Lichnerowicz-Formel,

\[D^2 = \Delta + \frac{1}{2}, \]

gilt. Diesen Operator müsste man jetzt natürlich noch in die obige Basis, also bezüglich der Zerlegung \(\mathcal{S} = \mathcal{E}_{+1} \oplus \mathcal{E}_{-1} \) umrechnen. Dann hätte er die Form

\[D = \begin{pmatrix} 0 & \delta \\ \delta^* & 0 \end{pmatrix}, \]

mit einem von Penrose und Goldberg [GB][PN] (die einen wesentlich direkteren Weg beschritten) eingeführten Differentialoperator \(\delta : \mathcal{E}_{+1} \to \mathcal{E}_{-1} \).

2.4 \(G \)-homogene Bündel

Wie weiter oben angedeutet, sind alle Linienbündel über der Sphäre \(SU(2) \)-homogen. Es stellt sich daher die Frage, wie man solche \(G \)-homogenen Bündel konstruieren kann. Eine Möglichkeit, die in der Folge dargestellt werden soll, besteht in der Verallgemeinerung der obigen Konstruktion für das Hopf-Bündel. Eine weitere, vollkommen allgemeine (dafür aber auch technisch aufwendigere) Methode wird im nächsten Kapitel vorgestellt.

Da die folgenden Aussagen in offensichtlicher Weise auch auf beliebige kompakten Lie-Gruppen und entsprechende \(\text{kommutative} \) Algebren verallgemeinert werden können, sei der Einfachheit halber weiterhin die Gruppe \(G = SU(2) \) betrachtet, welche auf die Algebra \(\mathcal{A} = C(S^2) \) wirkt.

Ganz analog zum Hopf-Bündel kann man nun eine beliebige irreduzible Darstellung \(V^l \) zum Spin \(l \) mit der Algebra tensorieren. Man erhält so einen projektiven Modul

\[E_l = V^l \otimes \mathcal{A} = \mathcal{A}^{2l+1} \]

auf dem eine \(su(2) \)-Wirkung der Form

\[J_i = \mathbb{1}_{2l+1} \otimes L_i + \tau_i \otimes \text{id}_\mathcal{A} \]

definiert ist. Diese Wirkung genügt offenbar der Kovarianz-Bedingung

\[J_i (a e) = a (J_i e) + (L_i a) e \quad \forall e \in E_l, \ a \in \mathcal{A} \]

Auf diese Weise hat man also ein (triviales) \(SU(2) \)-homogenes Bündel vom Rang \(2l+1 \) konstruiert.

Um nun \(SU(2) \)-homogene Bündel vom Rang Eins zu konstruieren zerlegt man das Bündel \(E_l \) in entsprechende Linienbündel. Es gilt nämlich:

Satz 2.4.1. Jedes Bündel \(E_l \) kann als Whitney-Summe von \(SU(2) \)-homogenen Linienbündeln zerlegt werden.

Beweis:
Das triviale Bündel E_l kann in irreduzible Darstellungen der Gruppe $SU(2)$ gemäß

$$E_l = V^l \otimes A = \bigoplus_{k=0}^{\infty} \left(V^l \otimes V^k \right)$$

$$= \bigoplus_{k=0}^{\infty} \left(V^{l-k} \oplus \cdots \oplus V^{k+l} \right)$$

zerlegt werden. Für ganzzahlige Werte von l erhält man also

$$E_l = \bigoplus_{k=0}^{l} \left(V^k \oplus \cdots \oplus V^k \right) \oplus \bigoplus_{k=l+1}^{\infty} \left(V^{k} \oplus \cdots \oplus V^{k} \right),$$

während für halbzahlige Werte

$$E_l = \bigoplus_{k=0}^{l} \left(V^k \oplus \cdots \oplus V^k \right) \oplus \bigoplus_{k=l+1, l+2, \ldots} \left(V^{k} \oplus \cdots \oplus V^{k} \right)$$

ist. Im Folgenden sei zunächst der Fall ganzzahliger l-Werte betrachtet. Dann existiert die triviale Darstellung V^0 in der Zerlegung von E_l genau einmal. Die von V^0 erzeugte Untermenge $E_0 = V^0 \cdot A$ des Moduls E_l ist offensichtlich ein endlich erzeugter Modul E_0 über A. Sei p_0 der Projektor auf E_0, also

$$E_0 = p_0 E_l.$$

Nach Konstruktion kommutiert p_0 mit der Wirkung der Algebra auf E_l. Anders ausgedrückt: p_0 ist ein Element der A-linearen Endomorphismen $End_A(E_l)$ des triviale Bündels E_l. Für kommutative Algebren A ist aber

$$End_A(E_l) \cong M_{2l+1}(A).$$

p_0 ist also ein Projektor in $M_{2l+1}(A)$ und der Modul E_0 ist folglich ein endlich erzeugter projektiver Modul, und per Konstruktion erfüllt er die obige Kovarianz-Bedingung für $SU(2)$-homogene Bündel. Die Darstellung V^1 existiert dreimal in der Zerlegung von E_l, wobei aber zu bedenken ist, dass bei der Multiplikation von V^0 mit den Erzeugern a, b, c_\pm, die ja selbst eine $(l = 1)$-Darstellung bilden, eine solche Darstellung V^1 entsteht, die zum Modul E_0 gehört. Man betrachtet daher im nächsten Schritt nur noch den Summanden

$$(V^1 \oplus V^1 \oplus V^1) \setminus \left((V^1 \oplus V^1 \oplus V^1) \cap E_0 \right)$$

in der Zerlegung von $E_l \setminus E_0$. Dieser ist als $SU(2)$-Darstellung isomorph zu $V^1 \oplus V^1$, und für jede der beiden Unterdarstellungen kann man wieder endlich erzeugte projektive Moduln $V^1 \cdot A$ konstruieren. Auf diese Weise kann man bis zur Darstellung V^l fortfahren, wobei man für die Konstruktion des neuen Moduls aus $V^k \oplus \cdots \oplus V^k$ natürlich jeweils nur das Komplement (isomorph zu $V^k \oplus V^k$) der bereits konstruierten Moduln verwenden darf. Man erhält so Schritt für Schritt insgesamt $2l + 1$ $SU(2)$-homogene Bündel. Weil der Rang des ursprünglichen Bündels $2l + 1$ war, haben diese Rang Eins.
Für halbzahlige \(l \) argumentiert man analog. Damit ist der Beweis der obigen Behauptung, dass das Bündel \(E_l \) vollständig in \(SU(2) \)-homogene Linienbündel zerlegt werden kann, abgeschlossen.

Die so – durch Zerlegung eines trivialen Bündels – konstruierten Linienbündel sind keineswegs triviale Linienbündel. Das sieht man schon daran, dass sie als \(SU(2) \)-Darstellungen, und damit auch als Moduln über \(A \) inäquivalent sind, denn es gibt für \(k_0 \in \{1, \ldots, l\} \) jeweils nur zwei Bündel mit der Zerlegung \(\bigoplus_{k=k_0}^{\infty} V^k \), und nur eines mit \(k_0 = 0 \).

Mit Hilfe einer Anleihe im nächsten Kapitel kann man sogar noch mehr über die Struktur dieser Linienbündel sagen:

Dort (im ersten Abschnitt des Kapitels “Die spektrale Beschreibung”) wird nämlich gezeigt, dass zu jedem \(k_0 \in \{1, \ldots, l\} \) jeweils genau zwei Linienbündel über der Sphäre mit der Zerlegung \(\bigoplus_{k=k_0}^{\infty} V^k \) existieren. (Bisher wurde ja nur gezeigt, dass es mindestens zwei gibt.)

Betrachtet man einen beliebigen projektiven Modul \(p\mathcal{A}^N \), so ist klar, dass die Spalten \(\sigma_i \in \mathcal{A}^N \) des Projektors als erzeugende Schnitte (odere kürzer: Basisbündel) des Bündels verwendet werden können. (Zu jedem Schnitt \(s \in \mathcal{A}^N \) existieren \(N \) Algebraelemente \(a_i \), so dass \(s = \sum_i a_i \sigma_i \) ist.) Auf der Sphäre sind die \(N \) Komponenten der \(\sigma_i \) dann Linearkombinationen der Kugelflächenfunktionen \(Y_{lm} \), Erinnert man sich nun wieder an die Projektoren \(p_{\pm n} \) auf der Sphäre (aus dem vorletzten Abschnitt), so ist klar, dass die Windungszahl \(n \) des Bündels zugleich der größte auftretende Wert der Quantenzahl \(l \) ist. Für die Bündel \(\mathcal{E}_{\pm n} \) gibt es also Kugelflächenfunktionen bis zur Ordnung \(Y_{n,m} \) in den Komponenten der Basisschnitte, aber keine höheren Ordnungen.

Die hier konstruierten Linienbündel werden aus \(SU(2) \) Darstellungen \(V^{k_0} \) erzeugt. Die Basisschnitte des Bündels sind demnach jeweils Elemente der \(V^{k_0} \). Die höchste Ordnung an Kugelflächenfunktionen, die in den Basisschnitten von Bündeln \(\bigoplus_{k=k_0}^{\infty} V^k \), welche durch Zerlegung von \(E_l \) gewonnen werden, überhaupt auftreten kann, ist \(2l \). (In dem Bündel \(\bigoplus_{k=1}^{\infty} V^k \), denn \(V^l \) hat ja einen Anteil aus \(V^{l} \otimes V^{2l} \).) Mit diesen Vorbetrachtungen bewaffnet kann man nun die Linienbündel, die in der Zerlegung der \(E_l \) auftreten, berechnen:

Lemma 2.4.2. Jedes Linienbündel \(\mathcal{E}_{\pm n} \) über der Sphäre \(S^2 \) ist \(SU(2) \)-homogen, und es gilt für ganzzahliges \(l \)

\[
E_l = \mathcal{A}^{2l+1} \cong \mathcal{E}_0 \oplus \bigoplus_{n=1}^{l} (\mathcal{E}_{+2n} \oplus \mathcal{E}_{-2n}),
\]

beziehungsweise

\[
E_l \cong \bigoplus_{n=\frac{1}{2},\frac{3}{2},\ldots}^{l} (\mathcal{E}_{+2n} \oplus \mathcal{E}_{-2n})
\]

für halbzahliges \(l \).
Beweis:
Weil das Bündel E_1 trivial ist, und immer $p_{-n} \sim (1 - p_{n})$ gilt, ist leicht einzusehen, dass jeweils beide Vorzeichen der Windungszahl auftreten.
Den Beweis führt man durch vollständige Induktion.
Für E_0 ist die Aussage offensichtlich richtig. Betrachtet man nun E_1, so enthalten die daraus konstruierten Linienbündel ausschließlich halbzahlige Darstellungen. Wie oben gezeigt wurde, ist die höchste Ordnung der in den Basisschnitten auftretenden Kugelflächenfunktionen $2 \cdot \frac{1}{2} = 1$. Da die beiden auftretenden Linienbündel offenbar nicht äquivalent zum trivialen Bündel mit $n = 0$ sind, müssen diese Kugelflächenfunktionen auch tatsächlich auftreten, und es folgt

$$E_1 = \mathcal{E}^+ + \mathcal{E}^- = \mathcal{E}^+ + \mathcal{E}^- .$$

Weiter geht’s mit E_1: Hier existiert ein Bündel, das mit $k_0 = 0$ startet, und dieses wurde bereits als das triviale Linienbündel identifiziert. Außerdem findet man zwei Bündel, die von V^1 erzeugt werden. Die höchste mögliche Windungszahl ist hier $2 \cdot 1 = 2$. Es können also nur noch die Linienbündel mit Windungszahl 1 oder Windungszahl 2 auftreten. Die Zerlegung der Bündel $\mathcal{E}^{\pm 1}$ in irreduzible $SU(2)$-Darstellungen startet aber mit $V^{\frac{1}{2}}$, wie gerade gezeigt wurde. Also ist

$$E_1 = \mathcal{E}^0 \oplus \mathcal{E}^{\pm 2} \oplus \mathcal{E}^{\pm 2} .$$

Auf diese Weise kann man nun Schritt für Schritt alle auftretenden Linienbündel identifizieren.

Sei $E_l = \oplus_k p_k A^{2l+1}$ mit $(2l + 1)$ selbstadjungierten Projektoren p_k. Die Darstellung J_i der $su(2)$ auf E_l setzt sich dann und nur dann auf $p_k E_l$ fort, wenn der Projektor $p_k \in M_{2l+1}(A)$ mit der Darstellung J_i kommutiert,

$$[J_i, p_k] = 0 .$$

Verwendet man die Matrix-Indizes $(p_k)_{\alpha\beta}$ der $(2l + 1) \times (2l + 1)$-Matrix p_k so ist diese Gleichung äquivalent zu

$$L_i ((p_k)_{\alpha\beta}) = ([p_k, \tau_i])_{\alpha\beta} .$$ \hspace{1cm} (2.16)

Proposition 2.4.3. Die Lösungen der Gleichung (2.16) mit Spur $p = 1$ stehen in Eins-zu-Eins-Korrespondenz mit den $SU(2)$-homogenen Linienbündeln über der Sphäre.

Zur Lösung dieser Gleichung geht man wie folgt vor: Die Matrizen auf V^i bilden ihrerseits eine $SU(2)$-Darstellung ($m \rightarrow u m u^*$):

$$M_{2l+1}(\mathbb{C}) = \bigoplus_{k=0}^{2l} V^k ,$$
und es existiert somit eine lineare Basis T_{kq} von sphärischen Tensoren in $M_{2l+1}(\mathbb{C})$. Diese transformieren also gemäß:

$$[\tau_3, T_{kq}] = q T_{kq}, \quad [\tau_+, T_{kq}] = \sqrt{(k-q)(k+q+1)} T_{kq+1}.$$

Jedes Element $p \in M_{2l+1}(A)$ kann damit als

$$p = \sum_{k=0}^{2l} \sum_{q=-k}^{+k} f_{kq} T_{kq}, \quad f_{kq} \in A$$

zerlegt werden. Da die T_{kq} linear unabhängig sind, ist die Gleichung (2.16) dann und nur dann erfüllt, wenn für alle i:

$$L_i(f_{kq}) = -[\tau_i, T_{kq}] \quad \Rightarrow \quad f_{kq} \sim Y_{k(-q)}$$

ist.

Somit gilt

$$p = \sum_{k=0}^{2l} \sum_{q=-k}^{+k} c_{kq} Y_{k(-q)} T_{kq}, \quad c_{kq} \in \mathbb{C},$$

und die mögliche Wahl der Koeffizienten wird durch Lösungen der algebraischen Gleichungen

$$p^2 = p, \quad \text{Spur } p = 1$$

bestimmt. (Die Multiplikationsregeln für $T_{kq} \cdot T_{k'q'}$ und die Kugelflächenfunktionen kann man mit Hilfe des Wigner-Eckart-Theorems recht leicht berechnen.) Es bleibt dem Leser überlassen zu überprüfen, dass zum Beispiel der Bott-Projektor

$$p_{+1} = \left(\begin{array}{cc} c^+ & \frac{\Phi}{2} \\ \frac{\Phi}{2} & c^- \end{array} \right)$$

als Lösung dieser Gleichungen gefunden werden kann.

Es muss darauf hingewiesen werden, dass mit der hier erarbeiteten Konstruktionsmethode zwar jedes $SU(2)$-homogene Linienbündel gefunden werden kann, umgekehrt aber nicht jeder Projektor, der ein solches $SU(2)$-homogenes Linienbündel definiert, automatisch eine Lösung der Gleichung (2.16) ist. Von den, im zweiten Abschnitt dieses Kapitels angegebenen Projektoren $p_{\pm n} \in M_2(A)$ lösen offenbar nur die Bott-Projektoren $p_{\pm 1}$ diese Gleichung.

Projektoren in $M_2(A)$ (und insbesondere die $p_{\pm n}$) sind von der Form

$$p_n = \frac{1}{2} (\mathbb{1} + n_i \sigma^i),$$

mit Algebra-Elementen n_i, die der Gleichung $\sum_n n_i^2 = 1$ genügen.

Die Gruppe $SU(2)$ wirkt nun als Untergruppe der Automorphismen auf die Algebra $\mathcal{A} = C(S^2)$. Für alle $\Gamma \in SU(2)$ (mit der Wirkung $\Gamma.f$ auf Funktionen $f \in \mathcal{A}$) und alle n_i, ist

$$\Gamma \cdot p = \frac{1}{2} (\mathbb{1} + (\Gamma.n_i) \sigma^i)$$
Von der lokalen zur globalen Beschreibung der Sphäre

Wieder ein Projektor:

\[\sum_i (\Gamma \cdot n_i)^2 = \Gamma \cdot \left(\sum_i n_i^2 \right) = 1. \]

Da die Projektoren \(p_{\pm n} \) aber nur Kugelflächenfunktionen bis zur Ordnung \(n \) enthalten, und da die Windungszahl des Bündels nur durch diese Ordnung bestimmt ist, folgt, dass der Projektor \(\Gamma \cdot p_{\pm n} \) jeweils äquivalent zu \(p_{\pm n} \) ist, und somit definiert er das gleiche Bündel.

Für \(|n| = 1\) kann man für jedes \(\Gamma \in SU(2) \) unitäre Matrizen \(U(\Gamma) \) mit

\[\Gamma \cdot p_{\pm 1} = U(\Gamma) p_{\pm 1} U(\Gamma)^* \]

finden. (Die Erzeuger dieser unitären Darstellung \(U(\Gamma) \) der Gruppe \(SU(2) \) sind natürlich die \(\tau_i \).) Im Fall \(|n| > 1\), ist dies aber offenbar nicht möglich.
2.4 G-homogene Bündel
Kapitel 3

Die spektrale Beschreibung

Im vorigen Kapitel wurden alle algebraischen Relationen, die zur Rekonstruktion der Sphäre nötig sind, zur Verfügung gestellt. Die dortige Vorgehensweise ist aber noch recht unsystematisch und die gegebene Beschreibung natürlich noch viel zu nahe an der klassischen, als dass man daraus viel über eine solche Rekonstruktion lernen könne. Zumindest wird aber die Rolle der $SU(2)$-Symmetrie deutlich, denn ohne die explizite Kenntnis der Darstellungstheorie der $SU(2)$ wäre man gar nicht erst so weit gekommen.

Hier wird nun ein systematischer Weg eingeschlagen, bei dem die gesamte Konstruktion des spektralen Tripels auf dieser Symmetrie beruht. Potentiell kann das so erarbeitete Verfahren spektrale Tripel zu jeder beliebigen Symmetrie-Gruppe liefern. Wie sich später zeigen wird, sogar zu Quantengruppen.

Wenn diese Symmetrie vermittels Isometrien wirkt, so muß sie zunächst einmal auf den Spinoren dargestellt sein. Da sie zudem auf die Algebra, und diese wiederum auch auf die Spinoren wirkt, muß diese Wirkung kovariant sein. Das ist bereits eine so mächtige Einschränkung an die möglichen Spinbündel, dass man die Darstellung der Algebra, und damit die Projektoren der zugehörigen endlich erzeugten projektiven Moduln, explizit daraus konstruieren kann. Tatsächlich kann man sogar die Algebra selbst, oder genauer alle Komodul-Algebren für diese Symmetrie daraus bestimmen.

Isometrien sollten außerdem mit dem Dirac-Operator vertauschen (streng genommen nur diejenigen Isometrien, die die Spinstruktur invariant lassen, aber diese wird hier so wieso über die Isometrien konstruiert). Zusammen mit der Bedingung, dass der Dirac-Operator ein Differential-Operator erster Ordnung ist, fixiert ihn das bis auf triviale Normierungen vollständig.

Als Endergebnis dieses Kapitels ergibt sich eine Charakterisierung der kompletten Riemannschen Spin-Struktur auf der Sphäre, die mit dem Spektrum einiger weniger Operatoren auskommt. Aus diesem Spektrum lässt sich die geometrische Information dann wieder zurückgewinnen, was hier, mal wieder wegen der Symmetrie, auch nicht allzu schwierig ist.

3.1 Kovariante Darstellungen von $C(S^2)$

...und man kann ihr mit Hilfe der Algebra beikommen. Man muss dabei aber graduell vorgehen, denn sonst kann es passieren, dass man die gan-
3.1 Kovariante Darstellungen von $C(S^2)$

ze Nacht damit verbringt, einen kleinen Teil davon mit Rechenschiebern
und Kosinen und anderen ähnlichen Instrumenten zu beweisen, ohne zum
Schluss an das zu glauben, was man bewiesen hat. Wenn das nämlich pas-
sierte, so müsste man es zurückverfolgen, bis man die Stelle gefunden hat,
an denen man seine eigenen Fakten und Ziffern, so wie sie in der Algebra
von Hall und Knight dargelegt sind, wieder glauben kann, und von dort
aus müsste man sich wieder zu der betreffenden Stelle vorarbeiten, bis
man das Ganze anständig glaubt, und nicht nur Teile halb geglaubt wer-
den oder ein Zweifel im Kopf zurückbleibt, der einen plagen würde wie
ein im Bett verlorener Hemdknopf.

... und Sie würden sich über die hohe Anzahl von Leuten in dieser Ge-
wunder, die halb Mensch und halb Fahrrad sind.

Flann O’Brien, Der dritte Polizist

Als erster Schritt sollte das Spinbündel etwas systematischer abgeleitet werden. Start-
punkt ist die Wirkung der

\[\Lambda \] auf die Algebra \mathcal{A}:

\[
\begin{align*}
L_0 a &= a, & L_0 c &= 0, & L_0 b &= -b \\
L_+ a &= 0, & L_+ c &= a, & L_+ b &= -2c \\
L_- a &= 2c, & L_- c &= -b, & L_- b &= 0.
\end{align*}
\] (3.1)

Dabei wird ab nun, der Bequemlichkeit zuliebe, mit

\[
c \overset{\text{def}}{=} c_+ - c_-
\]
gearbeitet.

Die irreduziblen Darstellungen der $su(2)$ zum Spin l werden weiterhin mit V^l bezeich-
net. Für $|l, m\rangle \in V^l$ ist also

\[
\begin{align*}
L_+ |l, m\rangle &= \sqrt{(l - m)(l + m + 1)} |l, m + 1\rangle \\
L_- |l, m\rangle &= \sqrt{(l - m + 1)(l + m)} |l, m - 1\rangle \\
L_0 |l, m\rangle &= m |l, m\rangle.
\end{align*}
\]

Da das Spinbündel $SU(2)$-homogen ist, werden nun die kovarianten Darstellungen
der Algebra \mathcal{A} konstruiert. Das heißt, es wird eine Darstellung auf einem Hilbertraum
\mathcal{H} gesucht, der ausserdem eine Darstellung der $su(2)$ trägt, und zwar so, dass für
\[i = \pm,3 \]

\[
L_i (f|l, m\rangle) = (L_i f)|l, m\rangle + f (L_i|l, m\rangle) \quad \forall |l, m\rangle \in \mathcal{H}, \quad f \in \mathcal{A}
\]
gilt. Diese Forderung wirkt auf den ersten Blick harmlos, ist in Wirklichkeit aber der
Königswege zu spektralen Tripeln mit bestimmten Isometrien. Wie mittlerweile klar
sein dürfte, ist sie völlig äquivalent zu der Forderung, dass \mathcal{H} als (Abschluss der)
Schnitte in ein $SU(2)$-homogenes Bündel aufgefasst werden kann. Gleichzeitig be-
sagt sie aber auch, dass die $SU(2)$-Transformationen auf die Algebra normerhaltend
wirken. Die Norm der Algebra liegt also auch schon fest. Weil sich die Algebren, auf
die die $SU(2)$ als Automorphismen wirken kann, ebenfalls leicht klassifizieren lassen,
Die spektrale Beschreibung

hätte man im Prinzip auch die Algebra aus dieser Forderung konstruieren können. (Die Darstellung der Algebra auf sich selbst ist der Prototyp einer solchen kovarianten Darstellung.) Für die Sphäre ist das aber recht aufwendig und soll daher an dieser Stelle noch übersprungen werden. Ein einfacheres Beispiel, an dem sich die Vorgehensweise verdeutlichen lässt, ist der Nichtkommutative Torus, der im nächsten Kapitel auf seine Symmetrien zurückgeführt wird.

Es bedarf eigentlich keiner Erwähnung, dass sich der Hilbertraum einer kovarianten Darstellung in die irreduziblen Darstellungen zerlegen lassen wird

\[\mathcal{H} = \bigoplus_{l=0, 1, \ldots} (V^l \cap \mathcal{H}), \]

wobei aber noch nicht klar ist, welche \(V^l \) in \(\mathcal{H} \) vorhanden sind. Auf \(\mathcal{H} \) wird ausserdem ein invarianter Skalarprodukt verwendet, es gilt also für die geeignet normierte Basis

\[\langle l, m | l', m' \rangle = \delta_{l,l'} \delta_{m,m'}, \]

und auch dies muss kaum begründet werden. Als einfache Konsequenz des Wigner-Eckart-Theorems ergibt sich dann folgendes

Korollar 3.1.1. *Eine kovariante Darstellung von \(\mathcal{A} \) auf einem Hilbertraum \(\mathcal{H} \) ist von der Form*

\[
\begin{align*}
a(l, m) &= A_{l,m}^+ |l + 1, m + 1\rangle + A_{l,m}^0 |l, m + 1\rangle + A_{l,m}^- |l - 1, m + 1\rangle, \\
b(l, m) &= B_{l,m}^+ |l + 1, m - 1\rangle + B_{l,m}^0 |l, m - 1\rangle + B_{l,m}^- |l - 1, m - 1\rangle, \\
c(l, m) &= C_{l,m}^+ |l + 1, m\rangle + C_{l,m}^0 |l, m + 1\rangle + C_{l,m}^- |l - 1, m\rangle.
\end{align*}
\]

Die Koeffizienten \(A_{l,m}^i, B_{l,m}^i, C_{l,m}^i \) sind von der Form

\[
\begin{align*}
A_{l,m}^+ &= -\sqrt{(l - m)(l - m - 1)} \alpha^-(l) \\
A_{l,m}^0 &= \sqrt{(l - m)(l + m + 1)} \alpha^0(l) \\
A_{l,m}^- &= -\sqrt{(l + m + 1)(l + m + 2)} \alpha^+(l) \\
B_{l,m}^+ &= \sqrt{(l + m)(l + m - 1)} \alpha^- (l) \\
B_{l,m}^0 &= \sqrt{(l + m)(l + m + 1)} \alpha^0 (l) \\
B_{l,m}^- &= \sqrt{(l - m + 1)(l - m + 2)} \alpha^+(l) \\
C_{l,m}^- &= \sqrt{(l - m)(l + m)} \alpha^-(l) \\
C_{l,m}^0 &= -m \alpha^0 (l) \\
C_{l,m}^+ &= -\sqrt{(l + m + 1)(l - m + 1)} \alpha^+(l)
\end{align*}
\]

mit zunächst noch unbestimmten Koeffizienten \(\alpha^i(l) \).

Die Zahlen \(\alpha^i(l) \) sind dabei die reduzierten Matrixelemente (\(a, b, c \) bilden ja einen Vektor-Operator), die Vorfaktoren im Wesentlichen die auftretenden Clebsch-Gordan-Koeffizienten. Es ist schon an dieser Stelle klar, dass halb- und ganzzahlige Spins entkoppeln. \(\mathcal{H} \) ist also auch als \(\mathcal{A} \)-Modul die direkte Summe der \(SU(2) \)-Darstellungen.
3.1 Kovariante Darstellungen von $C(S^2)$

mit ganzzahligem und der $SU(2)$-Darstellungen mit halbzahligem Spin.

Ganz so beliebig können die $\alpha^i(l)$ natürlich nicht sein. Man prüft leicht nach, dass $c^* = c$ und $a^* = b$ nur dann erfüllt ist wenn auch

$$\alpha^-(l) = \alpha^+(l - 1)$$

(3.14)

gilt. Die definierenden Relationen der Algebra

$$ab + c^2 = 1$$

sowie die Kommutativität, sind ebenfalls nicht von selbst erfüllt. Aus diesen Bedingungen kann man daher die $\alpha^i(l)$ bestimmen.

Aus der Kommutativität $ab = ba$ folgt die Relation

$$\alpha^0(l + 1)(2l + 4) = \alpha^0(l)2l,$$

(3.15)

wenn man sich den Term $|l, m\rangle \rightarrow |l + 1, m\rangle$ anschaut, und diese hat die folgende interessante Konsequenz:

*Existiert in \mathcal{H} der Wert $l = 0$, dann ist $\alpha^0(l) \equiv 0$. *

Das wird später noch verständlich. Existiert aber kein Vektor zu $l = 0$ in \mathcal{H} – insbesondere also für halbzahlige l-Werte – so hat diese Rekursionsvorschrift auch von Null verschiedene Lösungen:

$$\alpha^0(l) = \frac{1}{2l(2l + 2)} \alpha^0,$$

(3.16)

mit einer unbestimmten Konstanten α^0. (Die Rekursion beginnt dann bei dem kleinsten auftretenden Wert von l.)

Darüberhinaus findet man in der $|l, m\rangle \rightarrow |l, m\rangle$ Komponente von $ab = ba$ die Gleichung

$$\alpha^-(l + 1)^2(2l + 3) - \alpha^-(l)^2(2l - 1) = \alpha^0(l)^2,$$

die man ohne viel Mühe explizit löst. (Auch hier hängt die Lösung wieder davon ab, bei welchem Wert l_0 von l die Rekursion startet.) Damit sind die $\alpha^i(l)$ dann bis auf eine Konstante vollständig bestimmt, und diese bestimmt man mit der noch verbleibenden Relation $ab + c^2 = 1$. Zusammenfassend:

Lemma 3.1.2. *Es gibt zu jedem $l_0 = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \ldots$ jeweils genau eine kovariante Darstellung $\mathcal{H}^\pm_{l_0}$ der Algebra $C(S^2)$. Insbesondere ist*

$$\mathcal{H}_0 = \bigoplus_{l=0,1,2,\ldots} V_l,$$

$$\mathcal{H}^\pm_{\frac{1}{2}} = \bigoplus_{l=\frac{1}{2},\frac{3}{2},\ldots} V_l.$$
Für \mathcal{H}_0 ist die Darstellung durch Korollar 3.1.1 und

\[\begin{align*}
\alpha^0(l) &= 0, \\
\alpha^-(l) &= \frac{1}{\sqrt{(2l+1)(2l-1)}},
\end{align*}\]

bestimmt, und für \mathcal{H}_\pm^\pm durch 3.1.1 und

\[\begin{align*}
\alpha^0(l) &= \pm \frac{1}{2l(l+1)} & \text{für } & \mathcal{H}_\pm^\pm \\
\alpha^-(l) &= \frac{1}{2l} & l = \frac{1}{2}, \frac{3}{2}, \ldots
\end{align*}\]

Strenggenommen sollte man alle Hilberträume \mathcal{H}_0 in die folgenden Betrachtungen einbeziehen. Es soll ja gezeigt werden, dass man mit den Axiomen für spektrale Tripel tatsächlich das Spin-Bündel über der Sphäre konstruieren kann. Der damit verbundene technische Aufwand wäre aber zu groß, und da sich die Argumente wiederholen würden, wäre es auch recht langweilig für den Leser. Deshalb wird nur ein ungeeigneter Kandidat, nämlich \mathcal{H}_0 mitgeschleppt. Die einzige Feinheit, die dem Leser dabei entgeht, sind die “getwisteten Spinbündel”,

$\mathcal{E}_n \otimes \mathcal{A}$.

Auf diesen existiert zwar ein Dirac-Operator D und eine Realitätsstruktur J, diese kommutieren aber nicht, $DJ \neq JD$. Die getwisteten Spinbündel sind deshalb typische Beispiele für $Spin^c$-Strukturen, die nicht zu $Spin$-Strukturen geliftet werden können. Leider würde es den Rahmen dieser Arbeit sprengen einen “spektralen Beweis” dieser Aussagen zu führen.

Es ist anzumerken, dass es auch eine Vorzeichenfreiheit bei jedem einzelnen $\alpha^-(l)$ gibt (Die Relationen sind ja quadratisch). Man zeigt aber leicht, dass diese Vorzeichen in eine Redefinition der Basis absorbiert werden können. Der Grund dieser Vorzeichenfreiheit ist die Tatsache, dass auch alle Relationen der Algebra quadratisch sind. Die Multiplikation der Erzeuger mit -1 ist also ein Automorphismus der Algebra. Der Teufel steckt aber im Detail. Wie im obigen Theorem angedeutet, ist das Vorzeichen von α^0 alles andere als irrelevant. Die drei Darstellungen $\mathcal{H}_0, \mathcal{H}_\pm^\pm$ haben natürlich die Struktur eines endlich erzeugten projektiven Moduls, und diese Struktur gilt es als nächstes herauszuarbeiten.
3.1 Kovariante Darstellungen von $C(S^2)$

3.1.1 Die Struktur von \mathcal{H}_0

Auf \mathcal{H}_0 ist die Darstellung der Algebra also explizit durch

$$a[l,m] = -\frac{\sqrt{(l + m + 1)(l + m + 2)}}{\sqrt{(2l + 3)(2l + 1)}}|l + 1, m + 1)$$

$$+ \frac{\sqrt{(l - m)(l - m - 1)}}{\sqrt{(2l + 1)(2l - 1)}}|l - 1, m + 1), \quad (3.17)$$

$$b[l,m] = \frac{\sqrt{(l - m + 1)(l - m + 2)}}{\sqrt{(2l + 3)(2l + 1)}}|l + 1, m - 1)$$

$$- \frac{\sqrt{(l + m)(l + m - 1)}}{\sqrt{(2l + 1)(2l - 1)}}|l - 1, m - 1), \quad (3.18)$$

$$c[l,m] = -\frac{\sqrt{(l + m + 1)(l - m + 1)}}{\sqrt{(2l + 3)(2l + 1)}}|l + 1, m)$$

$$- \frac{\sqrt{(l - m)(l + m)}}{\sqrt{(2l + 1)(2l - 1)}}|l - 1, m) \quad (3.19)$$

gegeben. Erwartungsgemäß ist das identisch mit der Darstellung (2.15) der Algebra auf sich selbst, wobei die $|l,m)$ dann (bis auf globale Vorfaktoren) mit den Kugelflächenfunktionen zu identifizieren sind. Etwas “gelehrter” ausgedrückt

Proposition 3.1.3. Der Modul \mathcal{H}_0 ist ein freier Modul mit einem Erzeuger $|0,0)$.

Beweis: Man überlegt sich leicht, dass zu beliebigem l der Vektor $|l,l)$ proportional zu $a[l]0,0)$ sein muss. Durch m-fache Anwendung von L_- bekommt man dann $|l,m)$, denn nach Konstruktion ist ja

$$L_-|l,m) = \sqrt{(l - m + 1)(l + m)}|l,m - 1) = (L_- P(a,b,c))|0,0), \quad (3.20)$$

wenn $|l,m) = P(a,b,c)|0,0)$ und $P(a,b,c) \in \mathcal{A}$ ist. Die Behauptung folgt dann durch vollständige Induktion über m. Nachzutragen bleibt, dass $P(a,b,c)$ ein homogenes Polynom vom Grad l ist, wie man durch Anwendung von \overline{L}^2 sofort einsieht.

3.1.2 Die Struktur von $\mathcal{H}_{1/2}^\pm$

Das war einfach. Etwas schwieriger wird es für $\mathcal{H}_{1/2}^\pm$. Man kann zwar analog zum Vorgehen bei \mathcal{H}_0 beweisen, dass sich jeder Vektor in $\mathcal{H}_{1/2}^\pm$ aus $|\frac{1}{2}, \frac{1}{2})$ und $|\frac{1}{2}, -\frac{1}{2})$ erzeugen lässt, die beiden Schnitte sind aber nicht unabhängig über \mathcal{A}. Die Darstellung
Die spektrale Beschreibung

der Algebra auf diesen Hilberträumen ist als:

\[
a|l,m,\pm\rangle = -\frac{\sqrt{l(l+1)}(l+m+1)}{\sqrt{2l+2}}|l+1,m+1,\pm\rangle \\
\pm \frac{\sqrt{l(l-m)}(l+m+1)}{2l(l+1)}|l,m,\pm\rangle \\
+ \frac{\sqrt{l(l-m)}(l-m+1)}{\sqrt{2l}}|l-1,m+1,\pm\rangle,
\]

\[
b|l,m,\pm\rangle = \frac{\sqrt{l(l+1)}(l-m+1)}{\sqrt{2l+2}}|l+1,m-1,\pm\rangle \\
\pm \frac{\sqrt{l(l+m)}(l-m+1)}{2l(l+1)}|l,m-1,\pm\rangle \\
- \frac{\sqrt{l(l+m)}(l-m+1)}{\sqrt{2l}}|l-1,m-1,\pm\rangle,
\]

\[
c|l,m,\pm\rangle = -\frac{\sqrt{l(l+1)}(l-m+1)}{\sqrt{2l+2}}|l+1,m,\pm\rangle \\
\pm \frac{m}{2l(l+1)}|l,m,\pm\rangle \\
- \frac{\sqrt{l(l-m)}(l+m)}{\sqrt{2l}}|l-1,m,\pm\rangle
\]

gegeben. Durch explizite Rechnung überzeugt man sich nun leicht von der Richtigkeit der folgenden

Proposition 3.1.4. In \(\mathcal{H}_{\frac{1}{2}}^{+}\) gelten die Relationen

\[
-a|\frac{1}{2},-\frac{1}{2},+\rangle + c|\frac{1}{2},\frac{1}{2},+\rangle = -|\frac{1}{2},\frac{1}{2},+\rangle
\]

\[
c|\frac{1}{2},-\frac{1}{2},+\rangle + b|\frac{1}{2},\frac{1}{2},+\rangle = |\frac{1}{2},-\frac{1}{2},+\rangle,
\]

wohingegen in \(\mathcal{H}_{\frac{1}{2}}^{-}\)

\[
-a|\frac{1}{2},-\frac{1}{2},-\rangle + c|\frac{1}{2},\frac{1}{2},-\rangle = |\frac{1}{2},\frac{1}{2},-\rangle
\]

\[
c|\frac{1}{2},-\frac{1}{2},-\rangle + b|\frac{1}{2},\frac{1}{2},-\rangle = -|\frac{1}{2},-\frac{1}{2},-\rangle
\]

ist.

In der hier gewählten Schreibweise ist es offensichtlich, dass der Unterschied der Relationen gerade vom Vorzeichen von \(\alpha^0\) herrührt. Es genügt auch ein einziger Blick auf (2.14), und vielleicht die Erinnerung an \(c = c_+ - c_-\), um einzusehen, dass \(\mathcal{H}_{\frac{1}{2}}^{+}\) damit als \(\mathcal{E}_{\frac{1}{2}+}\) identifiziert ist. Die dort gewählten Generatoren \(\sigma_+\), \(\sigma_-\) sind gerade \(|\frac{1}{2},\frac{1}{2},+\rangle, |\frac{1}{2},-\frac{1}{2},+\rangle\).

Völlig analog ist \(\mathcal{H}_{\frac{1}{2}}^{-} \cong \mathcal{E}_{-1}\). Hier ist aber wieder \(p_{-1} \neq 1 - p_{+1}\) zu beachten. Obige Relation gilt nämlich für \((1 - p_{+1})A^2\).
3.2 J und das Tomita-Takesaki-Theorem

Es ist nun an der Zeit, den algebraischen Hintergrund der Ladungskonjugation J genauer zu beleuchten. In der Folge sei zunächst eine beliebige, kommutative C^*-Algebra \mathcal{A}, dargestellt auf einem Hilbertraum \mathcal{H}, gegeben.

Einen Vektor $|\psi\rangle \in \mathcal{H}$ nennt man zyklisch, wenn die Menge

$$\{a|\psi\rangle \mid a \in \mathcal{A}\}$$

dicht in \mathcal{H} liegt. Wenn aus $a|\psi\rangle = 0$ für $a \in \mathcal{A}$ stets $a = 0$ folgt, so sagt man, $|\psi\rangle$ sei separierend. Im Beispiel der Sphäre, für die Darstellung auf \mathcal{H}_0, ist $|0,0\rangle$ ein zyklischer, separierender Vektor.

Da $\mathcal{A}|\psi\rangle$ dicht in \mathcal{H} liegt, liegt es nahe den durch

$$Ja|\psi\rangle \overset{def}{=} a^*|\psi\rangle$$
definierten antilinearen Operator J auf seine Eigenschaften zu untersuchen. Klarweise ist J antiunitär,

$$\langle J a \psi | J b \psi \rangle = \langle a^* \psi | b^* \psi \rangle = \langle b \psi | a \psi \rangle = \overline{\langle a \psi | b \psi \rangle} \quad a, b \in \mathcal{A},$$

und da J dicht definiert ist, setzt es sich dann zu einem antiunitären Operator mit $J^2 = 1$ auf \mathcal{H} fort. Darüber hinaus ist $JaJ = a^*$ für alle $a \in \mathcal{A}$ (weil $|\psi\rangle$ separierend ist, ist insbesondere kein $a \in \mathcal{A}$ als 0 dargestellt),

$$JaJb|\psi\rangle = Jab^*|\psi\rangle = ba^*|\psi\rangle = a^*b|\psi\rangle.$$

Das ist zugegebenermaßen noch nicht sehr tiefssinnig. Man kann, falls ein zyklischer, separierender Vektor existiert, die gleiche Abbildung aber auch für nichtkommutative C^*-Algebren oder, genauer, für von Neumann-Algebren betrachten. Eine von-Neumann-Algebra \mathcal{M} ist eine (selbstadjungierte) Unter-Algebra der beschränkten Operatoren auf \mathcal{H}, die gleich ihrem Bikommutanten \mathcal{M}'' ist. (Der Kommutant \mathcal{M}' einer solchen Algebra ist die Menge aller beschränkten Operatoren die mit der gesamten Algebra vertauschen.) Jede von Neumann-Algebra ist auch eine C^*-Algebra, die Umkehrung gilt aber nicht.

Für nichtkommutative von Neumann-Algebren wird J üblicherweise aber mit S bezeichnet. Offenbar ist S dann im Allgemeinen weder antiunitär, noch ist $SaS = a^*$. Für beide Eigenschaften wurde ja die Kommutativität verwendet. Im Allgemeinen wird SaS noch nicht einmal in \mathcal{M} liegen, und S ist auch nicht notwendigerweise beschränkt. Ein recht tiefssinniges Resultat ist aber der

Satz 3.2.1. (Takesaki, Tomita)

Sei \mathcal{M} eine von-Neumann-Algebra mit zyklischem, separierendem Vektor $|\psi\rangle$ auf \mathcal{H}. Sei S der Abschluss des durch $S_0a|\psi\rangle \overset{def}{=} a^*|\psi\rangle$ dicht definierten antilinearen Operators, sowie

$$S = J\sqrt{\Delta}$$

die Polarzerlegung von S. (Dann ist J also antiunitär, $\Delta = S^*S$).
Die spektrale Beschreibung

Dann gilt

\[J \mathcal{A} J = \mathcal{A}', \]

\(\mathcal{A} \) und \(\mathcal{A}' \) sind also antiisomorph,

\[J^2 = 1, \]

und es gilt

\[\Delta^{it} \mathcal{A} \Delta^{-it} = \mathcal{A} \quad \forall t \in \mathbb{R}. \]

Der Beweis ist sehr technisch, und kann zum Beispiel in [Bra-Rob] gefunden werden. Leicht zu zeigen ist nur

\[S a S b |\psi\rangle = S a^* |\psi\rangle = b a^* |\psi\rangle = b S a |\psi\rangle = b S a S |\psi\rangle, \]

denn \(S |\psi\rangle = |\psi\rangle \). Das heißt, dass \(S \mathcal{A} S \subset \mathcal{A}' \), was die entsprechende Eigenschaft von \(J \) wenigstens plausibel macht.

Für konkrete Beispiele, und insbesondere für \(\mathcal{H}_0 \) bei der Sphäre, ist \(J \) aber recht einfach zu berechnen. Die Eigenschaften können dann, wenn man will, explizit nachgeprüft werden.

3.2.1 \(\mathcal{H}_0 \)

Wie bereits angesprochen, ist in \(\mathcal{H}_0 \) mit \(|0,0\rangle \) der zyklische, separierende Vektor schnell ausfindig gemacht. Insbesondere ist klar, dass zu jedem \(|l,m\rangle \) ein \(a_{l,m} \in \mathcal{A} \) existiert, so dass \(|l,m\rangle = a_{l,m} |0,0\rangle \). Um die Abbildung \(J \) konstruieren zu können, braucht man also das Verhalten der Polynome \(a_{l,m} \) unter der Adjunktion \(a_{l,m} \rightarrow a_{l,m}^* \). Zu diesem Zweck ist es sinnvoll die Abbildung

\[S : su(2) \rightarrow su(2) \]
\[L_i \mapsto -L_i, \quad i = \pm,3 \]
einzuführen, die man als Antipode der \(su(2) \) bezeichnet. Es gilt dann bekanntermaßen, wenn auch in veränderter Schreibweise

\[g(a^*) = ((S g)^* a)^*, \quad \forall g \in su(2), a \in \mathcal{A}. \quad (3.21) \]

Zu einem expliziten Beweis auf den Erzeugern \(a, b, c \), der hier übersprungen wird, benutzt man natürlich auch die bekannten Eigenschaften \(L_0^* = L_0, L^*_\pm = L_\mp \) der Cartan-Basis der \(su(2) \). Ein kleines Beispiel ist

\[L_+(c^*) = L_+ c = a = b^* = -(-b)^* = -(L_- c)^* = ((L_+)^* c)^* = ((S L_+)^* c)^*. \]

Man rechnet dann auch die Identität

\[\tilde{L}_2^2 (a^*) = \left(\tilde{L}_2 a \right)^* \]
sofort nach.
Angewendet auf \(|l, m\rangle = \alpha_{l,m}|0, 0\rangle\) ergibt sich daraus, dass \(\alpha_{l,m}^*|0, 0\rangle\) ein Eigenvektor von \(L_0\) zum Eigenwert \(-m\) ist. Durch Anwenden des Casimir-Operators \(\tilde{J}^2\) folgt dann

\[
J|l, m\rangle = \pm |l, -m\rangle.
\]

Das Vorzeichen – einen weiteren Vorfaktor kann es wegen \(J^2 = 1\) nicht geben – wird (zum Beispiel) durch Koeffizientenvergleich, mit Hilfe von (5.46), aus der Gleichung

\[
J(c|l, m\rangle) = c^*\alpha_{l,m}^*|0, 0\rangle = c\alpha_{l,m}^*|0, 0\rangle)
\]

berechnet. Man findet, durchaus nicht unerwartet, die folgende

Proposition 3.2.2. Für die Darstellung von \(A\) auf \(\mathcal{H}_0\) ist der modulare Operator \(J\) des Tomita-Takesaki-Theorems durch

\[
J|l, m\rangle = (-1)^l |l, -m\rangle
\]

gegeben.

3.2.2 \(\mathcal{H}_0^\pm\)

Für die beiden Darstellungen der Algebra auf \(\mathcal{H}_0^\pm\) gibt es keinen zyklischen, separierenden Vektor, \(\mathcal{A}\), die direkte Summe der beiden, ist aber ein freier Modul, und man könnte hier, in beiden Komponenten von \(\tilde{A}^2\) getrennt, das Tomita-Takesaki-Theorem anwenden. Das würde aber – abgesehen davon, dass es nicht sehr systematisch wäre – zu einem falschen Ergebnis führen, weil die Aufspaltung \(\mathcal{H}_0^+ \oplus \mathcal{H}_0^-\) dabei nicht berücksichtigt würde.

Der richtige Weg besteht wieder darin, die Symmetrien der Sphäre auszunutzen. Oben wurde die Antipode \(\mathcal{S}\) der Lie-Algebra \(su(2)\) eingeführt, und dies mag dort etwas übertrieben gewirkt haben. Nun wird es aber wichtig:

Um die Identität \(L(a^*) = ((SL)a^*)^*\) sicherzustellen, ist es eine nahe liegende zusätzliche Forderung an die Daten des spektralen Tripels, dass \(J\) die Antipode auf \(\mathcal{H}\) implementiert:

\[
JLJ = (SL)^*
\]

Dann folgt nämlich für alle \(L \in su(2)\), alle \(|\psi\rangle \in \mathcal{H}\) und alle Algebra-Elemente \(a\):

\[
(L(a^*))|\psi\rangle = L(JaJ)|\psi\rangle - (JaJ)L|\psi\rangle
= J((JLJ)a)J|\psi\rangle - J(a(JLJ))J|\psi\rangle
= J((SL)^*a)J|\psi\rangle - J(a(SL)^*)J|\psi\rangle
= ((SL)^*a)^*|\psi\rangle - (a(SL)^*)^*|\psi\rangle
= ((SL)^*a)|\psi\rangle.
\]

(Die Schreibweise \((L(a^*))|\psi\rangle\) soll dabei anzeigen, dass nur das Algebra-Element \(L(a^*)\) auf \(|\psi\rangle\) wirkt.)

Die Gleichung (3.22) ist aber nicht automatisch durch jede Realitätsstruktur \(J\) erfüllt. Das wird später noch klar. Die physikalische Ladungskonjugation genügt aber dieser
Die spektrale Beschreibung

Gleichung. Letztlich bedeutet (3.22) nämlich nur, dass die Antiteilchen unter der konjugierten Darstellung transformieren sollen.

Da aus (3.22) insbesondere $JL^2 = L^2 J$ folgt, kann eine solche Abbildung J (mit $J^2 = 1$) nur dann existieren, wenn jede im Hilbertraum \mathcal{H} (existente) irreduzible $SU(2)$-Darstellung zweimal (beziehungsweise in einer geraden Anzahl) existiert. Wenn man nur $\mathcal{H}_0, \mathcal{H}_\frac{3}{2}$ betrachtet, so kommen als Spin-Bündel demnach nur

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_0$$

und

$$\mathcal{H} = \mathcal{H}_\frac{3}{2} \oplus \mathcal{H}_\frac{3}{2}$$

in Betracht. In diesem Abschnitt werden natürlich nur die Räume $\mathcal{H}_\frac{3}{2} \oplus \mathcal{H}_\frac{3}{2}$ betrachtet.

Wegen

$$JL_0 J = -L_0$$

und $J^2 = 1$ ist klar, dass es Vorzeichen $(\lambda_m^2) = 1$ gibt, so dass für alle $|l, m, \pm \rangle \in \mathcal{H}_\pm$ entweder

$$J|l, m, \pm \rangle = \lambda_m |l, m, \pm \rangle$$

oder

$$J|l, m, \pm \rangle = \lambda_m |l, m, \mp \rangle$$

ist. An dieser Stelle sind eigentlich auch Linearkombinationen dieser beiden Wahlen möglich. Die Realitätsstruktur J antivertauscht aber auch mit der Graduierung γ, und da diese ihrerseits mit den Darstellungen der $SU(2)$ und der Algebra \mathcal{A} vertauscht, verbleiben nur diese beiden Möglichkeiten. Die Gleichungen

$$JL_\pm J \overset{\dagger}{=} -L_\mp$$

führen dann auf

$$\lambda_m \lambda_{m+1} = \lambda_m \lambda_{m-1} = -1$$

mit der allgemeinen Lösung

$$\lambda_m^n = (-1)^m \cdot \lambda_l.$$

Die Vorzeichen λ_l bleiben dabei unbestimmt. Die gesuchte Realitätsstruktur muss aber auch $JcJ = c^* = c$ und $JaJ = b$ erfüllen. Es ist:

$$JcJ|l, m, \pm \rangle = +\lambda_l \lambda_{l+1} \sqrt{(l - m + 1)(l - m + 2)} \sqrt{2l + 2} |l + 1, m - 1, \cdot \rangle + \sqrt{(l + m)(l - m + 1)} \frac{2l(l + 1)}{2l} |l, m - 1, \cdot \rangle - \lambda_l \lambda_{l-1} \sqrt{(l + m)(l + m - 1)} \sqrt{2l} |l - 1, m - 1, \cdot \rangle.$$
3.3 \(\gamma \) und der Dirac-Operator

Vergleicht man dies mit
\[
b|l, m, \pm\rangle = \sqrt{(l - m + 1)(l - m + 2)} \sqrt{2l + 2} |l + 1, m - 1, \pm\rangle \\
\pm \sqrt{(l + m)(l - m + 1)} \sqrt{2l(l + 1)} |l, m - 1, \pm\rangle \\
- \sqrt{(l + m)(l + m - 1)} \sqrt{2l} |l - 1, m - 1, \pm\rangle,
\]
so folgt sofort, dass nur auf \(\mathcal{H}_1^+ \oplus \mathcal{H}_1^- \) eine solche Realitätstruktur existiert. In diesem Fall ist wieder
\[
J|l, m, \pm\rangle = (-1)^{l-m}|l, m, \mp\rangle.
\]
(Die Gleichung für \(c \) rechnet man analog nach.)

3.3 \(\gamma \) und der Dirac-Operator

Jetzt kann man endlich zur Konstruktion des Dirac-Operators schreiten, dem Höhepunkt dieser Rechnung.

Nach dem vorigen Abschnitt ist nun klar, dass dieser nur auf den Hilberträumen \(\mathcal{H}_0 \oplus \mathcal{H}_0 \) beziehungsweise \(\mathcal{H}_0 \oplus \mathcal{H}_0 \) zu suchen ist.

Die Aufspaltung der Hilberträume bezieht sich auf die Eigenräume (zu den Eigenwerten \(\pm 1 \)) der Graduierung \(\gamma \). Der Operator \(\gamma \) – die Darstellung der Volumenform auf \(\mathcal{H} \) – vertauscht mit der Algebra und mit der Darstellung der \(su(2) \). (Deshalb sind die beiden Eigenräume von \(\gamma \) identisch mit den beiden kovarianten Untermoduln (über \(\mathcal{A} \)) von \(\mathcal{H} \).) In zwei (euklidischen) Dimensionen antikommutiert \(\gamma \) mit der LadungsKonjugation \(J \).

Der Dirac-Operator \(D \) auf der Sphäre ist ein selbstadjungierter Operator auf \(\mathcal{H} \), der mit \(\gamma \) antivertauscht. Außerdem ist er invariant unter der Wirkung der Gruppe \(SU(2) \), das heißt er vertauscht mit deren Darstellung auf \(\mathcal{H} \). Aus diesen Eigenschaften folgt bereits, dass es komplexe Konstanten \(d_l \) gibt, so dass
\[
D|l, m, +\rangle = d_l|l, m, -\rangle \\
D|l, m, -\rangle = \overline{d_l}|l, m, +\rangle
\]
(auf der Basis \(|l, m, \pm\rangle \) von \(\mathcal{H} \)) gilt. Wegen der Gleichung \([D, J] = 0 \), die in zwei euklidischen Dimensionen gilt, müssen diese sogar reell sein,
\[
d_l \in \mathbb{R}.
\]

Die Konstanten \(d_l \), das Spektrum von \(D \), sind durch die obigen Eigenschaften aber noch nicht fixiert. Die wichtigste Eigenschaft, nämlich die Tatsache, dass \(D \) ein DifferentialOperator erster Ordnung ist, wurde aber noch gar nicht berücksichtigt. Algebraisch läßt sie sich in die sogenannte **Ordnung-Eins-Bedingung** übersetzen:
\[
[[D, f], g] = 0, \quad \forall f, g \in \mathcal{A}.
\]
(3.23)

Mit Hilfe dieser Bedingung kann man die Konstanten \(d_l \) dann (bis auf eine triviale Normierung) bestimmen, und auch den Raum \(\mathcal{H}_0 \oplus \mathcal{H}_0 \) als möglichen Kandidaten für das Spinbündel ausschliessen.

3.3.1 $\mathcal{H}_0 \oplus \mathcal{H}_0$

Als Erstes wird der Fall $\mathcal{H}_0 \oplus \mathcal{H}_0$ abgeschlossen. Dann ist für den Generator a (mit (5.46)

$$[D, a]|l, m, +\rangle = (d_{l+1} - d_l) \sqrt{(l+m+1)(l+m+2)} \sqrt{(2l+3)(2l+1)} |l+1, m+1, -\rangle$$

$$+(d_{l-1} - d_l) \sqrt{(l-m)(l-m-1)} \sqrt{(2l+1)(2l-1)} |l-1, m+1, -\rangle,$$

Aus der Gleichung

$$[[D, a], a] = 0$$

ergibt sich somit in der Komponente $l \mapsto l + 2$:

$$d_{l+2} - 2d_{l+1} + d_l = 0$$

mit der allgemeinen Lösung

$$d_l = \alpha l + \beta \quad \alpha, \beta \in \mathbb{R}$$

Setzt man diese Lösung in die $l \mapsto l$ ein, so wird man (mit ein paar Umformungen) auf die Gleichung

$$\frac{(l+m)\sqrt{(l-m)(l+m+1)}}{(2l+1)(2l-1)} = \frac{(l-m+1)\sqrt{(l+m+1)(l-m)}}{(2l+3)(2l+1)}$$

geführt, also einen offensichtlichen Widerspruch.

Proposition 3.3.1. Auf $\mathcal{H}_0 \oplus \mathcal{H}_0$ gibt es keinen invarianten Dirac-Operator.

Das ist auch nicht weiter verwunderlich: Da der Modul \mathcal{H}_0 trivial ist, sind die Elemente von \mathcal{H}_0 nichts anderes als Funktionen auf der Sphäre. Gesucht war also nach einem invarianten Differential-Operator erster Ordnung auf $C(S^2)$. Es ist wohlbekannt, dass ein solcher Operator nicht existiert. Man kann dies (zum Beispiel) als Korollar aus dem berühmten ”Igelsatz”:

Es gibt keine nirgendwo verschwindenden Vektorfelder auf S^2.

schliessen. Ein Differential-Operator kann ja als Vektorfeld aufgefasst werden, und wenn dieses invariant unter der $SU(2)$ sein soll, so muss es überall auf S^2 den glei-
chen Wert annehmen. Wegen des Igelsatzes verschwindet es dann also überall.

Differential-Operatoren gibt es aber mehr als genug auf $C(S^2)$ und für jeden solchen Differential-Operator ∂ definiert

$$D|l, m, +\rangle = \partial|l, m, -\rangle, \quad D|l, m, -\rangle = \partial^*|l, m, +\rangle$$

einen Operator, der alle bisher aufgeführten Eigenschaften des Dirac-Operators hat.
Ein (euklidischer) Dirac-Operator ist aber elliptisch, das heißt, dass sein Hauptsymbol vertierbar sein muss. (Das wird im fünften Kapitel genauer erläutert.) Weil dieses Hauptsymbol aber wieder als Vektorfeld über S^2 aufgefasst werden kann, folgt mit dem Igelsatz:

Es gibt keinen elliptischen Differential-Operator auf $H_0 \oplus H_0$, der mit γ antikommutiert.

In den Axiomen für spektrale Tripel ist diese Eigenschaft (die Elliptizität) wie folgt eingebaut:

Wie oben bereits angedeutet ist γ die Darstellung der Volumenform auf dem Hilbertraum des spektralen Tripels. Das bedeutet, dass es Algebra-Elemente f_i, g_i, h_i gibt, so dass

$$\gamma = \sum_i f_i[D, g_i][D, h_i]$$

ist. Weil γ invertierbar ist, ist auch dies – wieder wegen des Igelsatzes – für keinen selbstadjungierten Operator (der mit γ antikommutiert und die Ordnung-Eins-Bedingung erfüllt) möglich. Ein Beweis dieser sehr plausiblen Aussage ist allerdings recht aufwendig.

3.3.2 $\mathcal{H} = H_0^+ \oplus H_0^-$

In $\mathcal{H} = H_0^+ \oplus H_0^-$ liegen die Verhältnisse nun ganz anders. Hier ist für den invarianten Operator D

$$[D, a]|l, m, +\rangle = -(d_{l+1} - d_l)\frac{\sqrt{(l + m + 1)(l + m + 2)}}{\sqrt{2l + 2}}|l + 1, m + 1, -\rangle + 2d_l\frac{\sqrt{(l - m)(l + m + 1)}}{2l(l + 1)}|l, m + 1, -\rangle + (d_{l-1} - d_l)\frac{\sqrt{(l - m)(l - m - 1)}}{\sqrt{2l}}|l - 1, m + 1, -\rangle,$$

und aus der $l \mapsto l + 2$-Komponente von $[[D, a], c] = 0$ erhält man wieder die allgemeine Lösung

$$d_l = \alpha l + \beta \quad \alpha, \beta \in \mathbb{R}$$

Diesmal ist es (mit dieser Lösung) aber auch möglich, alle anderen auftretenden Gleichungen zu erfüllen:

In der Komponente $l \mapsto l + 1$ von $[[D, a], c]$ zum Beispiel findet man die Gleichung

$$\alpha \frac{\sqrt{(l + m + 1)(l + m + 2)}}{\sqrt{2l + 2}} \left(\frac{m}{2l(l + 1)} + \frac{m + 1}{(2l + 2)(l + 2)}\right) = 2(\alpha l + \beta)\sqrt{l + m + 2}(l - m + 1)\frac{\sqrt{(l - m)(l + m + 1)}}{2l(l + 1)}$$

$$+ 2(\alpha l + \alpha + \beta)\sqrt{l + m + 2}(l - m + 2)\frac{\sqrt{(l - m + 1)(l + m + 2)}}{(2l + 2)(l + 2)}.$$
Die spektrale Beschreibung

die dann und nur dann erfüllt ist, wenn
\[\beta = \frac{\alpha}{2} \]
gilt. In diesem Fall verschwindet dann auch die \((l \mapsto l)\)-Komponente, auch wenn die Rechnung recht mühsam ist.
Ganz analog rechnet man die Ordnung-Eins-Bedingung auch für alle anderen Kombinationen von Generatoren nach.

Proposition 3.3.2. Die Eigenwerte des Dirac-Operators auf \(S^2 \) sind (bei fester Skalierung \(\alpha \in \mathbb{R} \)) durch
\[\lambda^\pm_l = \pm \alpha \left(l + \frac{1}{2}\right) \]
\[l = \frac{1}{2}, \frac{3}{2}, \ldots \]
gegeben.

3.4 Poincaré-Dualität und abschließende Bemerkungen

Es ist nun an der Zeit Abschied von der Sphäre zu nehmen, obwohl noch lange nicht alles gesagt ist. In den letzten Abschnitten wurde das reelle gerade spektrale Tripel \((\mathcal{H}, A, D, \gamma, J)\) vollständig in der spektralen Sprache ausgearbeitet.
Der Hilbertraum wurde als \(\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^- \) identifiziert, wobei \(\mathcal{H}^\pm \) die Schnitte in das Hopfbündel und sein konjugiertes bezeichnet. Andere Hilberträume, und somit Algebra-Darstellungen, sind nicht mit allen Axiomen für spektrale Tripel (die im fünften Kapitel erläutert werden) verträglich. Das wurde an (wenigen) ausgewählten Beispielen demonstriert.
Der Dirac-Operator konnte mit Hilfe der Ordnung-Eins-Bedingung (und seinen (Anti-)Kommutations-Relationen mit \(J \) und \(\gamma \)) berechnet werden.
Strenggenommen sind aber noch nicht alle Axiome für spektrale Tripel gezeigt. Zum einen ist noch zu beweisen, dass \(\gamma \) die Darstellung der Volumenform auf \(\mathcal{H} \) ist. Da \(\gamma \) als Operator fest vorgegeben
\[\gamma|l, m, \pm\rangle = \pm|l, m, \pm\rangle, \]
und die klassische Volumenform auf der Sphäre wohlbekannt ist, ist das eine einfache Rechnung. Man muss nur die Identität
\[\gamma = a[D, b][D, c] - a[D, c][D, b] + c[D, b][D, a] - c[D, a][D, b] + b[D, c][D, a] - b[D, a][D, c] \]
auf der Basis \(|l, m, \pm\rangle\) nachprüfen. Das ist zwar nicht schwierig (und auch geschehen), aber ziemlich unübersichtlich (es gibt 42 Summanden), weshalb es hier nicht vorgeführt wird.
Desweiteren sind die analytischen Eigenschaften des spektralen Tripels noch nicht gezeigt: Erstens müssen die Differentiale \([D, f]\) für alle Algebra-Elemente \(f \) beschränkte Operatoren auf \(\mathcal{H} \) sein, was hier nicht gezeigt werden soll, weil der einzige schnelle Weg, dies zu tun, darin besteht, diese Differentiale in lokale Ausdrücke zurückzubersetzen.
3.4 Poincaré-Dualität und abschließende Bemerkungen

Das Axiom der klassischen Dimension ist demgegenüber am schnellsten in der algebraischen Sprache zu zeigen. Die nichtverschwindenden charakteristischen Werte des Dirac-Operators sind als

\[\mu_{n,k} = n, \quad k = 1, 2, \ldots, 4n \quad n = 1, 2, 3, \ldots \]

gegeben, und jeder dieser Eigenwerte ist 4n-fach entartet. Demzufolge ist

\[\frac{1}{\log N} \sum_{n=1}^{N} \sum_{k} \frac{1}{\mu_{n,k}} = \frac{1}{\log N} \sum_{n=1}^{N} \frac{4n}{n^2} < \infty. \]

Die Dimension der Sphäre ist also tatsächlich 2 ;-) .

Last not least gilt es auch eine topologische Eigenschaft des Spin-Bündels, die sogenannte Poincaré-Dualität nachzuprüfen. **Zur Erinnerung:** Das Axiom der Poincaré-Dualität besagt, dass die sogenannte Schnittform \(q \) der \(K \)-Theorie, also die durch

\[q([p], [q]) = \langle [p \otimes q], (\mathcal{H}, D) \rangle \]

mit Hilfe der Index-Paarung mit dem \(K \)-Zykel \((\mathcal{H}, A, D) \) definierte bilineare Abbildung

\[q : K_\bullet(A) \times K_\bullet(A) \to \mathbb{Z} \]

nicht entartet ist.

Die Index-Paarung berechnet man am einfachsten über die lokale Index-Formel

\[\langle [p \otimes q], (\mathcal{H}, D) \rangle = \frac{1}{2\pi i} \int_{S^2} \hat{A}(M) ch(p \otimes q). \]

In zwei Dimensionen ist stets \(\hat{A}(M) = 1 \), denn der Dirac Genus \(\hat{A}(M) \) ist eine Summe von Formen des Grades \(4k k = 0, 1, 2 \ldots \)

Die demnach einzige relevante Chern-Klasse vom höchsten Grad – hier also \(ch_2(p) \) – hat darüber hinaus für Linienbündel die nützliche Eigenschaft

\[ch_2(p \otimes q) = ch_2(p) + ch_2(q), \]

was man sich leicht überlegt, wenn man berücksichtigt, dass der Chern-Charakter als \(ch(p) = e^F \) berechnet werden kann, wobei \(F \) dann die Krümmung eines beliebigen Zusammenhangs auf dem durch \(p \) beschriebenen Bündel ist. (Die einfachste Wahl wäre \(F = p \, dp \, dp \).

Wegen der Bilinearität

\[q([p] \oplus [p'], [q]) = q([p], [q]) + q([p'], [q]) \]
\[q([p], [q] \oplus [q']) = q([p], [q]) + q([p], [q']) \]

der Schnittform, genügt es, diese auf einer Basis der Gruppe \(K_0(C(S^2)) \) zu berechnen (\(K_1(C(S^2)) \) ist ja trivial). Mit dem im vorigen Kapitel abgeleiteten Zwischenresultat
Die spektrale Beschreibung

\[ch_2(p_k) = i \frac{k}{2} dV, \] wobei \(dV \) die Volumenform auf der Sphäre bezeichnet, folgt dann für alle \(k, l \in \mathbb{Z} \)

\[q_{kl} \overset{\text{def}}{=} q([p_k], [p_l]) = \frac{1}{2\pi i} \int_{S^2} ch_2(p_k \otimes p_l) = k + l. \]

Insbesondere ist also \(q_{00} = 0 \), was zu erwarten war: Für jedes triviale Bündel über einer Mannigfaltigkeit verschwindet der Chern-Charakter, und somit die Schnittform. Mit diesem Ergebnis kann man nun zum Beweis der Poincaré-Dualität schreiten.

Hauptresultat 3.4.1. Die Schnittform \(q_{kl} = k + l \) auf der Sphäre \(S^2 \) ist nicht entartet: wenn für eine Klasse

\[[x] = \bigoplus_k \xi_k [p_k] \quad k, \xi_k \in \mathbb{Z} \]

in \(K_0(C(S^2)) \) die Gleichung

\[q([x], [p]) = 0 \quad \forall [p] \in K_0(C(S^2)) \]

gilt, so folgt, dass \([x] \) trivial ist (das heißt \([x] \) beschreibt ein triviales Bündel).

Beweis: Sei also \(q([x], [p]) = 0 \) für alle \([p]\) und für ein \([x] = \bigoplus_k \xi_k [p_k]\).

Es sei noch einmal an die Tatsache erinnert. Man kann deshalb ohne Beschränkung der Allgemeinheit \(\xi_k \geq 0 \) für alle \(k \neq 0 \) voraussetzen.

Aus \(q([x], [p]) = 0 \) folgt dann sofort die Gleichung

\[\sum_k \xi_k (k + l) = 0 \]

die für alle \(l \) gelten muss. Das ist aber nur dann möglich, wenn sowohl

\[\sum_k \xi_k = 0 \quad \text{als auch} \quad \sum_k \xi_k k = 0 \]

gelten. Weil die \(\xi_k \) für \(k \neq 0 \) positiv sind, folgt dann rasch

\[\xi_k = \xi_{-k}. \]

Das bedeutet aber

\[[x] = \bigoplus_{k > 0} \xi_k ([p_k] \oplus [p_{-k}]) \oplus \xi_0 [p_0] = \left(\sum_{k \geq 0} \xi_k \right) [p_0]. \]

Bei der Konstruktion des spektralen Tripels in diesem Kapitel kam den Symmetrien der Sphäre eine zentrale Rolle zu. Ohne die Berücksichtigung der Symmetrie-Eigenschaften aller Beteiligten (\(\mathcal{A}, \mathcal{A}, D, \gamma, J \)) wäre die Rechnung überhaupt nicht durchführbar gewesen. Diese Eigenschaften sollen deshalb noch einmal kurz zusammengenommen werden:
3.4 Poincaré-Dualität und abschließende Bemerkungen

- Die Algebra \(\mathcal{A} = C(S^2) \) ist eine Modul-Algebra über der Lie-Algebra \(su(2) \), das heißt es existiert eine Darstellung der \(su(2) \) auf \(\mathcal{A} \), so dass für alle \(f, g \in \mathcal{A} \) und die Darstellung \(L_i \in su(2) \)

\[
L_i(fg) = L_i(f)g + fL_i(g)
\]
gilt.

- Auf dem Hilbertraum \(\mathcal{H} \) existiert eine Darstellung von \(su(2) \) und die Darstellung von \(\mathcal{A} \) auf \(\mathcal{H} \) ist kovariant bezüglich dieser \(su(2) \)-Darstellung,

\[
L_i(f\psi) = L_i(f)\psi + fL_i(\psi) \quad f \in \mathcal{A}, \quad \psi \in \mathcal{H}
\]

- Der Dirac-Operator \(D \) kommutiert mit der Darstellung der Symmetrien auf \(\mathcal{H} \)
- Die Graduierung \(\gamma \) kommutiert mit den \(L_i \).
- Die Realitätsstruktur \(J \) implementiert die Antipode \(SL_i = -L_i \) auf \(\mathcal{H} \)

\[
JLJ = (SL)^* \quad L \in su(2)
\]

Die Eigenschaft der Realitätsstruktur muss besonders hervorgehoben werden. Sie macht es nämlich möglich die Realitätsstruktur \(J \) zu konstruieren, was besonders wichtig ist, wenn das einzige andere (mir bekannte) Hilfsmittel – das Tomita-Takesaki-Theorem – versagt.

Teil II

Symmetrien spektraler Tripel
Was ist denn so schön an Dreiecken und Kreisen?

B. Mandelbrot

Die Bedeutung von Symmetrien in der Physik kann kaum überbetont werden. Vor allem sind in allen zur Zeit verwendeten Theorien der fundamentalen Wechselwirkungen sowohl die Dynamik als auch die Kinematik weitestgehend durch die zugrundeliegenden Symmetrien festgelegt.

Im Falle der Kinematik bezieht sich diese Aussage natürlich auf die aus der Symmetrie abgeleiteten Erhaltungssätze, denen jeder physikalische Prozess (den die entsprechende Theorie beschreibt) unterworfen ist. So ist die Erhaltung des Vierer-Impulses eine Konsequenz der Poincaré-Kovarianz der Theorie, auf deren Darstellungstheorie unter anderem der moderne Teilchen-Begriff beruht. Man kann aber auch die Ladungserhaltung, die aus der globalen $U(1)$-Symmetrie folgt, zur Kinematik rechnen.

Setzt man einen gewissen experimentellen “Input” voraus, so ist auch die Dynamik der Theorie – also die Wechselwirkungsterme in der Lagrange-Dichte – durch ihre Symmetrien bestimmt. Hierzu benötigt man aber auch noch die Anforderung einer konsistenten Quantisierbarkeit, also etwa die Renormierbarkeit oder die Abwesenheit von Anomalien, die aber ebenfalls eng mit der zugrundeliegenden Symmetrie verwoben sind. Der Zusammenhang zwischen der Lagrangedichte der Theorie und ihren Symmetrien beruht dabei in allen Fällen auf dem Eichprinzip, wobei für die Gravitation die Spin-Gruppe $SL(2, \mathbb{C})$, welche die Freiheit bei der Wahl des mitbewegten Vierbeins beschreibt, relevant ist. (Darüberhinaus benötigt man aber auch noch die Diffeomorphismusgruppe, also die freie Wahl der verwendeten Koordinaten.)

Die durch ein spektrales Tripel beschriebene Geometrie hängt selbstverständlich nicht von der gewählten Basis im Hilbertraum ab. Dies ist, kurz gesagt, der Begriff der unitären Äquivalenz spektraler Tripel. Ganz so blutleer wie es sich nun anhören mag, ist dieses Konzept aber nicht. Die unitären Operatoren, also die Basiswechsel, auf

\(^1\)Lie-Gruppen haben ihre Entdeckung gerade dieser Eigenschaft zu verdanken.
beschreiben nämlich die Wirkung der Diffeomorphismen der zugrundeliegenden Mannigfaltigkeit ebenso wie die Spin-Gruppe und eventuelle weitere Symmetrien wie Eichtransformationen und Familiensymmetrien. In diesem Symmetrie-Begriff vereinigen sich also alle oben angesprochenen Symmetrien.

Definition 3.4.2. Zwei spektrale Tripel \((\mathcal{H}_1, A_1, D_1, \gamma_1, J_1)\) und \((\mathcal{H}_2, A_2, D_2, \gamma_2, J_2)\) heißen **unitär äquivalent** wenn eine unitäre lineare Abbildung

\[
U : \mathcal{H}_1 \rightarrow \mathcal{H}_2
\]

existiert derart, dass

\[
\begin{align*}
A_2 &= U A_1 U^* , \\
D_2 &= U D_1 U^* , \\
\gamma_2 &= U \gamma_1 U^* , \\
J_2 &= U J_1 U^*
\end{align*}
\]

ist.

Die beiden Hilberträume können dann natürlich identifiziert werden, so dass \(U\) nur eine unterschiedliche Basiswahl beschreibt. In der Folge sollte der Leser diesen Umstand stets im Hinterkopf behalten, ebenso wie das Beispiel des spektralen Tripels des Standardmodells.

Der wichtigste Spezialfall dieser unitären Äquivalenzen wird durch die Einschränkung \(A_1 = A_2 = A\) charakterisiert. \(U\) definiert dann in offensichtlicher Weise einen Automorphismus der Algebra \(A\), und man kann nun drei wichtige Spezialfälle unterscheiden:

- \(U\) vertauscht mit der Algebra, der angesprochene Automorphismus ist dann trivial. Denkt man nun an das spektrale Tripel des Standardmodells, so können die Elemente des Hilbertraum als Schnitte in ein Vektorbündel \(\mathcal{F} \otimes V\) über der Raumzeit \(M\) interpretiert werden.

\[
[U, a] = 0 \quad \forall a \in A
\]

bedeutet dann einfach, dass \(U\) zum einen nur in den Fasern des Bündels wirkt, zum anderen dort aber auch mit den in \(A\) enthaltenen Matrizen, die auf \(V\) wirken, vertauscht. Es ist, wie gleich klar wird, sinnvoll sich auf solche \(U\), die ausserdem mit \(\gamma\) und \(J\) vertauschen, zu beschränken. Wenn es jeweils nur eine Familie von Fermionen gäbe, so wäre die Untergruppe solcher unitärer Operatoren isomorph zur Gruppe

\[
\text{Map}(M, \text{Spin}(4)),
\]

der Funktionen auf der Raumzeit mit Werten in der Spingruppe. Wenn \(U\) nicht mit \(J\) vertauschte, wäre es, ausgewertet in einem beliebigen Punkt, nur in \(\text{Spin}^c\), vertauscht es nicht mit \(\gamma\) landet man in \(\text{Pin}^{(c)}\).

Weil es mehr als nur eine Familie im Standardmodell gibt, kann \(U\) auch (punktweise) die einzelnen Familien aufeinander abbilden. Solange es die Quantenzahlen der Fermionen dabei unberührt lässt wird es immer noch mit \(A\) vertauschen.
Im Beispiel des Standardmodells ist die Untergruppe der unitären Äquivalenzen, die sowohl mit der Algebra, als auch mit γ und J vertauschen – wenn man die rechtshändigen Neutrinos unberücksichtigt lässt – als

$$\text{Map}(M,G), \quad G = \text{Spin}(4) \times U(3)^5$$

gegeben. Wie die Gruppe $U(3)^5$ zustande kommt, wird in Kapitel 7.5 erklärt, ebenso wie die physikalische Bedeutung dieser Transformationen. Klar ist natürlich, dass im Allgemeinen unter Transformationen aus dieser Untergruppe $D_1 \neq D_2$ sein wird, selbst wenn diese Transformationen konstant auf der Raumzeit sind, dass aber beide Dirac-Operatoren die gleiche Physik beschreiben.

- Der nächste wichtige Fall, der aber nur für nichtkommutative Algebren auftritt, ist der eines U, das zwar nicht mit der Algebra vertauscht, aber selbst ein Algebra-Element ist, $U \in \mathcal{A}$. Diese inneren Automorphismen können dann im Beispiel des Standardmodells als Funktionen auf M mit Werten in der Eichgruppe, also als lokale Eichtransformationen, interpretiert werden.

- Last not least, die größte Untergruppe der unitären Äquivalenzen von spektralen Tripeln zur gleichen Algebra, die daraus durch Division mit den ersten beiden Untergruppen hervorgeht: Die Diffeomorphismusgruppe. Wenn man, wie es hier bisher getan wurde, den Hilbertraum und die Darstellung der Algebra festhält, dann sind allerdings nicht alle Diffeomorphismen, sondern nur diejenigen die die Volumenform invariant lassen, unitär auf \mathcal{H} dargestellt.

Es ist sehr interessant, dass alle diese, physikalisch relevanten, Symmetrien in der Sprache der spektralen Tripel in einem einzigen vereint werden. Die Vereinigung der Diffeomorphismusgruppe mit den inneren Symmetrien spielt bei der spektralen Wirkung, die sowohl das Standardmodell, als auch die Einstein-Hilbert-Wirkung beinhaltet, eine Rolle. Die Vereinigung mit den Familiensymmetrien $SU(3)^5$ fand bisher aber noch keine Beachtung.
Kapitel 4

Der Nichtkommutative Torus und seine Symmetrien

Als weitere Illustration der angesprochenen Konstruktion eines spektralen Tripels “aus den Symmetrien heraus”, sei die Gruppe $U(1) \times U(1)$ angeführt. Da es sich gleichzeitig um ein sehr einfaches, trotzdem aber interessantes Beispiel handelt, kann man dieses Kapitel wohl auch als “Auslaufen” nach den Anstrengungen bei der S^2 ansehen, was aber keineswegs heißen soll, dass der Nichtkommutative Torus ein Auslaufmodell ist. Im Gegenteil: In Zusammenhang mit der Stringtheorie ist diese Algebra wieder ins Zentrum des Interesses gerückt.

$U(1) \times U(1)$ hat zwei kommutierende Generatoren δ_1, δ_2,

$$[\delta_1, \delta_2] = 0,$$

und alle irreduziblen Darstellungen V_{nm} sind natürlich eindimensional, charakterisiert durch zwei ganze Zahlen n, m:

$$\delta_1 |n, m\rangle = n |n, m\rangle, \quad (4.1)$$
$$\delta_2 |n, m\rangle = m |n, m\rangle \quad |n, m\rangle \in V_{nm}. \quad (4.2)$$

Als nächstes braucht man eine Algebra, auf der die Generatoren der Gruppe als Derivationen dargestellt werden können. Um die Diskussion der vielen Fälle nicht auszufallen zu lassen, ist es ratsam, sich auf Algebren zu beschränken, die jede irreduzible Darstellung V_{nm} genau einmal enthalten. Dann gibt es automatisch genau zwei invertierbare Erzeuger U, V, welche sich zudem als $|1, 0\rangle$ beziehungsweise $|0, 1\rangle$ transformieren:

$$\delta_1 U = U, \quad \delta_2 U = 0, \quad (4.3)$$
$$\delta_1 V = 0, \quad \delta_2 V = V. \quad (4.4)$$

Klarerweise ist

$$\delta_1 U^n V^m = n U^n V^m, \quad (4.5)$$
$$\delta_2 U^n V^m = m U^n V^m,$$

$$\delta_1 V^m U^n = n V^m U^n, \quad (4.6)$$
$$\delta_2 V^m U^n = m V^m U^n,$$

und wenn man für den Kommutator der Erzeuger versuchsweise ein Polynom ansetzt, erhält man sofort, daß

$$UV = \lambda VU, \quad \lambda \in \mathbb{C} \quad (4.5)$$
gelten muß, indem man sukzessive δ_1, δ_2 anwendet. Zum Beispiel folgt für die erste Ordnung, etwa bei $U^2 - VU = \alpha U$, durch einmalige Anwendung von δ_2 sofort $\alpha = 0$. Bei Polynomen höheren Grades ist natürlich anzunehmen, dass diese aus über \mathcal{A} unabhängigen Summanden bestehen, damit mit einem Koeffizientenvergleich argumentiert werden kann.

Um noch eine \ast-Struktur und eine Norm zu finden, die mit der Relation (4.5) verträglich ist, und somit durch Abschluss in der Norm eine C^\ast-Algebra \mathcal{A} zu erhalten, konstruiert man als nächstes eine kovariante Darstellung auf einem Hilbertraum \mathcal{H}_0^1.

Das heißt \mathcal{H}_0^1 soll selbst eine Darstellung von $U(1) \times U(1)$ tragen, sowie eine Darstellung von \mathcal{A}, so daß

$$\delta_i (U|n, m\rangle) = (\delta_i U)|n, m\rangle + U (\delta_i |n, m\rangle), \quad (4.6)$$

$$\delta_i (V|n, m\rangle) = (\delta_i V)|n, m\rangle + V (\delta_i |n, m\rangle) \quad (4.7)$$

für alle Vektoren $|n, m\rangle$ aus \mathcal{H}_0^1 gilt. Im Folgenden wird angenommen, dass die in \mathcal{H}_0^1 existierenden $|n, m\rangle$ eine Orthonormalbasis bilden, was die Invarianz des Skalarproduktes impliziert. Welche n, m in \mathcal{H}_0^1 vorhanden sind, wird nicht vorausgesetzt.

Ohnehin bekommt man aus der Anwendung von δ_1 auf $U|n, m\rangle$ sofort

$$U|n, m\rangle = \sum_k A_{kn}^m |n + 1, k\rangle. \quad (4.8)$$

Anwendung von δ_2 auf diese Gleichung liefert dann

$$mA_{kn}^m = kA_{kn}^m \quad \forall k$$

und somit (analogue für V)

$$U|n, m\rangle = A_{n}^m |n + 1, m\rangle, \quad (4.9)$$

$$V|n, m\rangle = B_{n}^m |n, m + 1\rangle$$

mit zunächst noch unbestimmten Konstanten $A_{n}^m (= A_{mn}^m), B_{n}^m (= B_{mn}^m)$. Weil, wie man leicht sieht,

$$U^*|n, m\rangle = \overline{A_{n-1}^m}|n - 1, m\rangle, \quad (4.10)$$

$$V^*|n, m\rangle = \overline{B_{n-1}^m}|n, m - 1\rangle \quad (4.11)$$

gilt, ist eine wohldefinierte \ast-Struktur auf der Algebra durch

$$UU^* = U^*U = 1 = VV^* = V^*V \quad (4.12)$$

gleichen, was aber

$$|A_{n}^m|^2 = 1 = |B_{n}^m|^2 \quad \forall n, m,$$

1Der Grund für das Anhängsel 0 wird später klar.
und $|\lambda| = 1$ erfordert. Außerdem ist dann

$$\mathcal{H}_0 = \bigoplus_{n,m \in \mathbb{Z}} V_{nm}$$ \hspace{1cm} (4.13)

klar. Es tauchen also alle irreduziblen Darstellungen genau einmal auf, denn ihre Unitarität verbietet die Existenz eines Vektors im Kern von U, U^*, V oder V^*.

Es muss nun nur noch die Kommutatorrelation $UV = \lambda VU$ implementiert werden. Das ist äquivalent zu der Gleichung

$$A_{n+1}^m B_n^m = \lambda B_{n+1}^m A_n^m,$$

welche durch

$$A_n^m = c_n \lambda^m x \quad |c_n| = 1, x \in \mathbb{R},$$

$$B_n^m = c_m \lambda^{m(x-1)} \quad |c_m| = 1,$$

allgemein gelöst wird. Weil die gesuchte Darstellung aber nur modulo unitärer Äquivalenz interessiert, kann man stets

$$U|n, m\rangle = |n + 1, m\rangle,$$

$$V|n, m\rangle = \lambda^{-n} |n, m + 1\rangle,$$ \hspace{1cm} (4.14)

erreichen. Außerdem sieht man sofort, dass jeder Vektor $|n, m\rangle$ als

$$|n, m\rangle = U^n V^m |0, 0\rangle$$ \hspace{1cm} (4.15)

geschrieben werden kann. Folglich ist $|0, 0\rangle$ ein zyklischer (das heißt $A|0, 0\rangle$ liegt dicht in \mathcal{H}_0), und sogar ein separierender ($a|0, 0\rangle = 0, \ a \in \mathcal{A} \leftrightarrow a = 0$) Vektor. Tomita’s Theorem besagt dann in diesem Fall, dass die antilineare Abbildung

$$J_0 : \mathcal{H}_0 \rightarrow \mathcal{H}_0$$

$$a|0, 0\rangle \mapsto a^*|0, 0\rangle$$ \hspace{1cm} (4.17)

$$\Rightarrow |n, m\rangle \mapsto \lambda^{-nm} |n, -m\rangle$$ \hspace{1cm} (4.18)

mit $J_0^2 = 1$ einen Anti-Isomorphismus von \mathcal{A} auf seinen Kommutanten \mathcal{A}' gemäß

$$a \mapsto J_0 a^* J_0 \overset{df}{=} a^a$$

induziert. Sprich: $[a, b^a] = 0, \ \forall a, b \in \mathcal{A}$ und $a \mapsto a^a$ ist (offensichtlich) antilinear, injektiv und surjektiv. Zum Beweis, dass a^a in \mathcal{A}' liegt, braucht man nur

$$U^0|n, m\rangle = \lambda^{-m} |n + 1, m\rangle,$$ \hspace{1cm} (4.19)

$$V^0|n, m\rangle = |n, m + 1\rangle$$ \hspace{1cm} (4.20)

einzusetzen, und der Rest ist ganz einfach, z.B.

$$[V^*, U^0]|n, m\rangle = (\lambda^{-m} \chi^{n+1} - \lambda^{-m+1} \chi^n)|n + 1, m - 1\rangle = 0.$$
(Schwieriger zu zeigen ist nur die Surjekтивität.) Offenbar ist \(U = U^\circ, V = V^\circ \) nur im kommutativen Fall \(\lambda = 1 \).
Um nun, wie bei der Sphäre, eine Graduierung \(\gamma \) definieren zu können, sowie ein mit \(\gamma \) antikommutierendes \(J \) das \(J^2 = -1 \) erfüllt, verdoppelt man wie üblich den Hilbertraum. Ab sofort wird also auf
\[
\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_0
\]
gearbeitet, und wie zuvor
\[
\gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & -J_0 \\ J_0 & 0 \end{pmatrix}
\]
definiert. Die Wirkung der Symmetriegruppe \(U(1) \times U(1) \) sowie die Darstellung von \(\mathcal{A} \) werden in offensichtlicher Weise auf \(\mathcal{H} \) fortgesetzt, was ebenso wie die nunmehr verwendete Definition von \(J_0 \) klar sein sollte.
Gesucht ist nun - last but not least - der Dirac-Operator. Da er selbstadjungiert sein muß, sowie mit \(\gamma \) antivertauschen soll, hat er sicher die Form
\[
D = \begin{pmatrix} 0 & \partial \\ \partial^* & 0 \end{pmatrix}.
\]
Um einen sinnvollen Dirac-Operator finden zu können kann man wieder fordern, dass die Wirkung der Gruppe \(U(1) \times U(1) \) isometrisch sei, \(D \) also invariant sei, und somit mit den beiden Generatoren \(\delta_1, \delta_2 \) vertausche. Bezeichnet man die Basis in den beiden Eigenräumen von \(\gamma \) mit \(|n, m, \pm\rangle \) so bedeutet diese Forderung schlicht
\[
\partial|n, m, -\rangle = d_{n,m} |n, m, +\rangle.
\]
Zur Berechnung der \(d_{n,m} \) und damit letztlich des Spektrums von \(D \) zieht man nun wieder die “Ordnung Eins”-Bedingung heran. Allerdings ist hier im Allgemeinen \(a^\dagger \neq a \), und die Forderung \([D, V], U^k = 0 \) \(\forall k \) ist nicht (nichttrivial) zu erfüllen. Durchaus möglich, und in der Axiomatik nichtkommutativer spektraler Tripel daher statt der kommutativen “Ordnung Eins”-Bedingung gefordert, ist die Bedingung
\[
|[D, a], b^\dagger] = 0 \quad \forall a, b \in \mathcal{A}
\]
und dies führt in der Tat auch für \(\lambda \neq 1 \) ans Ziel: Zunächst einmal ist obige Bedingung gleichwertig zu
\[
|[\partial, a], b^\dagger] = 0 \quad \forall a, b \in \mathcal{A},
\]
und das führt direkt auf die beiden Gleichungen
\[
d_{n+2,m} = 2d_{n+1,m} - d_{n,m}, \quad d_{n,m+2} = 2d_{n,m+1} - d_{n,m}
\]
mit der Lösung \(d_{n,m} = \alpha n + \beta m + \sigma \alpha, \beta, \sigma \in \mathbb{C} \). Weitere Gleichungen gibt es nicht. Da man in \(D \) aber stets eine Konstante vernachlässigen kann, und auch die Skalierung von \(D \) beliebig ist, wählt man am einfachsten
\[
d_{n,m} = n + m\tau \quad \tau \in \mathbb{C}.
\]
Die entsprechenden Eigenwerte von \(D \) kann man natürlich ganz geradlinig berechnen. Es ist aber sowieso sinnvoller das Spektrum von \(D^2 \) zu betrachten: Die Eigenwerte

\[
\mu_{n,m}(D^2) = |n + m\tau|^2
\]
sind zweifach entartet (\(D \) hat die Eigenwerte \(\pm |n + m\tau| \)) und mit ein ganz klein wenig Mühe findet man, dass die Summe der endlichen (also \(m = n = 0 \) herausgenommen) Eigenwerte von \(D^{-2} \) logarithmisch divergent ist

\[
\lim_{R \to \infty} \frac{1}{\ln R} \sum_{n^2 + m^2 \leq R^2} \frac{1}{|n + m\tau|^2} < \infty.
\]

Die Dimension des nichtkommutativen Torus ist also 2. Die standardgemäße Rechnung, die nichts mit der Symmetrie des Torus zu tun hat, sei hier nicht vorgestellt. Sie kann, ebenso wie die Berechnung von \(\gamma \) als Hochschildzykel (Zwei-Form), in [Monsaraz] gefunden werden, wo man auch einige sehr interessante Referenzen zum Thema “Nichtkommutativer Torus”, das in anderen Aspekten höchst nichttrivial ist, nachschlagen kann.

Zum Abschluss dieses Kapitels sollte aber zumindest noch die eigentliche Algebra, nämlich die Prä-\(C^* \)-Algebra \(\mathcal{A} \) der “glatten” Funktionen, und die \(C^* \)-Algebra der “stetigen Funktionen” \(\mathcal{A} \) ausgearbeitet sein. Die Berechnung von \(D \) ist schließlich nur konsistent, wenn es überhaupt differenzierbare Elemente in \(\mathcal{A} \) gibt, was bisher stillschweigend angenommen wurde.

Betrachtet man eine beliebige, zunächst formale, Potenzreihe

\[
a = \sum_{k,r} a_{k,r} U^k V^r
\]

sowie einen beliebigen normierten Vektor \(\xi = \sum_{n,m} \xi_{n,m} |n, m \rangle \), so berechnet man sofort

\[
\|a\xi\|^2 = \sum_{q,s} \left| \sum_{o,p} \xi_{o,p} a_{q-o,s-p} \right|^2.
\]

Das sieht wenig ermutigend aus, aber wichtig ist nur die Erkenntnis, dass die Beschränktheitsbedingung an den Operator \(a \) (\(\|a\xi\| < \infty \forall \xi \in \mathcal{H}_\lambda \)) von \(\lambda \) unabhängig ist. Es genügt also, sich auf den kommutativen Fall zu beschränken, und hier kann man wieder direkt das Gelfand-Naimark-Theorem anwenden. Da der Torus \(T^2 \) als topologischer Raum einfach \(S^1 \times S^1 \) ist, und man

\[
\|1 + e^{i\alpha}U\| = 2 = \|1 + e^{i\alpha}V\| \quad \forall \alpha
\]

unmittelbar einsieht, ist \(\mathcal{A} \cong C(T^2) \) für \(\lambda = 1 \). Bezeichnet man die Abbildung \(a \mapsto [D,a] \) mit \(d \) so gilt

\[
d^l a = \sum_{k,r} a_{k,r} (k + r\tau)^{l_k} U^k V^r,
\]
a ∈ A ist also dann und nur dann glatt, wenn die $a_{k,r}$ schneller als jede Potenz von $(k + r)^{-1}$ abfallen ($τ$ spielt dann für die Konvergenz der Reihe keine Rolle). Weil das ohnehin bedeutet, dass a in A liegt, kann man die dichte Unteralgebra A kurz durch

$$A = \left\{ \sum_{k,r} a_{k,r} U^k V^r \mid \sup_l (1 + k + r)^l a_{k,r} < \infty \iff a_{k,r} \in \mathcal{S}(\mathbb{Z}^2) \right\}$$

(4.23)

charakterisieren. $\mathcal{S}(\mathbb{Z}^2)$ bezeichnet hier den Schwartz-Raum der schnell fallenden Folgen.

Eine Abhandlung über den Nichtkommutativen Torus fängt üblicherweise mit dieser Definition von A, natürlich gemeinsam mit der Relation $UV = VU$, an. Den Hilbertraum \mathcal{H} muss man dann über eine GNS-Konstruktion finden. Verwendet wird hierzu die Spur

$$\tau_0 \left(\sum_{k,r} a_{k,r} U^k V^r \right) = a_{0,0}$$

auf A. \mathcal{H} ist also der Abschluss von A, mit dem Skalarprodukt $\langle a | b \rangle = \tau_0(ab^*)$.

Die Existenz der Spur $τ_0$ ist eng mit der Symmetrie-Gruppe des Torus $U(1) \times U(1)$ verbunden (Das Skalarprodukt kann ja auch über seine Invarianz unter der Gruppeneinwirkung definiert werden). Ein ähnliches Phänomen wird sich bei der Nichtkommutativen Sphäre zeigen, wo es, außer im kommutativen Fall, sogar noch eine weitere nicht-triviale Spur gibt, die eng mit den Eigenschaften der Symmetrie-Gruppe $U_q(su(2))$ verbunden ist.
Kapitel 5

H-symmetrische spektrale Tripel

Weil man natürlich daran interessiert ist, möglichst viele neue nichtkommutative Beispiele zu finden, und weil die Wirkung einer kompakten Lie-Gruppe auf eine nichtkommutative Algebra eher die Ausnahme als die Regel darstellt, liegt es nahe, nach einer Verallgemeinerung der kompakten Lie-Gruppen zu suchen. Wie bereits angedeutet wurde, sollte diese Verallgemeinerung dabei vor allem den folgenden Kriterien genügen:

- Es sollte eine geeignete Wirkung auf eine Algebra existieren, die so beschaffen ist, dass kovariante Darstellungen der Algebra existieren.

- Alle Darstellungen dieser verallgemeinerten Symmetrie sollten endlichdimensional sein.

Diesen Anforderungen genügen die von Woronowicz eingeführten kompakten Quantengruppen, die im wesentlichen eine C^*-Vervollständigung von bestimmten unitalen Hopf-Algebren sind. Das wird im nächsten Abschnitt kurz erläutert. Im darauf folgenden Abschnitt wird dann, basierend auf dem Konzept der kompakten Quantengruppen, der Begriff des H-symmetrischen spektralen Tripels eingeführt.

Es sollte noch darauf hingewiesen werden, dass die Suche nach einem verallgemeinerten Symmetriebegriff natürlich nicht nur durch die Notwendigkeit neuer Beispiele motiviert ist. Vielmehr ist die Motivation, etwas vereinfachend gesagt, ähnlich zu der ursprünglichen Motivation für die Einführung von Supergruppen in die Physik. Es ist wohlbekannt, dass keine Lie-Gruppe existiert, unter welcher das Vakuum einer Quantenfeldtheorie invariant sein könnte, die sowohl die Poincaré-Gruppe als auch Liegruppen der inneren Symmetrien des Standardmodells als Untergruppen beinhaltet. Ist man also an einer solchen Vereinheitlichung aller Symmetrien, die den vier fundamentalen Wechselwirkungen zugrunde liegen, interessiert, so muss man die Kategorie der Lie-
Gruppen verlassen. Eine erste Verallgemeinerung bilden die Supergruppen und die daraus abgeleiteten supersymmetrischen Theorien. Quantengruppen bilden eine umfassendere Verallgemeinerung des Symmetriebegriffs, die der angesprochenen Motivation vollauf gerecht wird. Einerseits gibt es zum Beispiel mit der q-Deformation der (euklidischen) Spin-Gruppe bei $q^3 = 1$ ein Beispiel für eine Quantengruppe, die im Wesentlichen die gleiche Darstellungstheorie wie die vollständige Symmetriegruppe des Standardmodells hat, also die Darstellungen der Spin-Gruppe und die der inneren Symmetrien vereint. Andererseits tauchen Hopf-Algebren in sehr natürlicher Weise als Symmetrien von niederdimensionalen Quantenfeldtheorien im Zusammenhang mit der Zopfgruppen-Statistik auf. Es gibt zwar keine (mir bekannten) nichttrivialen Beispiele, die für realistische vierdimensionale Theorien relevant sind, aber zumindest zeigt dieses niederdimensionale Beispiel, dass Quantengruppen, oder etwas präziser gesagt: quasitrianguläre Hopf-Algebren, genau die richtigen Eigenschaften haben, um als Symmetrien von Quantenfeldtheorien zu dienen.

5.1 Kompakte Quantengruppen

5.1.1 Hopf-Algebren

Einführungen in die Theorie der Hopf-Algebren ([CP][Deb][Mb][pink][Wcom]) gibt es mittlerweile weit mehr als solche über Nichtkommutative Geometrie. Es wird in der Folge eine Vertrautheit des Lesers mit diesem Begriff vorausgesetzt. Der folgende Abschnitt dient ohnehin nur zur Erinnerung an Definitionen und wichtige Eigenschaften, bevor im nächsten Abschnitt Woronowiczs Definition, die sehr viel eleganter ist, besprochen werden kann. Aus diesem Grund wird die folgende Darstellung nur die wichtigsten Definitionen stichwortartig zusammenfassen. Für eine ausführliche Präsentation wäre ohnehin weder Raum noch Zeit. Die gewählte Darstellung folgt (sehr eng) [CP], eine sehr gute Referenz ist [Deb].

Definition 5.1.1. Eine unitale Algebra über \mathbb{C} ist ein \mathbb{C}-Vektorraum \mathcal{A}, zusammen mit einer bilinearen Abbildung $\mu : \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$, dem Produkt, und einer linearen Abbildung $\epsilon : \mathbb{C} \rightarrow \mathcal{A}$, der Eins-Abbildung, so dass die folgenden Diagramme kommutieren:

\[
\begin{array}{ccc}
\mathcal{A} \otimes \mathbb{C} & \xrightarrow{\text{id} \otimes \mu} & \mathcal{A} \otimes \mathcal{A} \\
\cong \downarrow & & \downarrow \mu \\
\mathcal{A} & \xrightarrow{\text{id}} & \mathcal{A}
\end{array}
\]

das dazu “geflippte”
welche die Eigenschaften des Eins-Elementes charakterisieren, sowie die Assoziativität:

Eine Algebra ist kommutativ, wenn das Diagramm

kommutiert, wobei

\[\sigma : A \otimes A \to A \otimes A \]

\[a_1 \otimes a_2 \mapsto a_2 \otimes a_1 \]

der Flip-Automorphismus ist.

Das soll, wie schon betont wurde, nicht weiter erläutert werden. Vielmehr dient diese Definition einzig dem Zweck den Leser an die relevanten Diagramme zu erinnern, bevor diese nun durch Umkreisen der Pfeile dualisiert werden.

Definition 5.1.2. Eine kounitale Ko-Algebra über \(\mathbb{C} \) ist ein \(\mathbb{C} \)-Vektorraum \(A \), zusammen mit einer linearen Abbildung \(\Delta : A \to A \otimes A \), dem Koprodukt, und einer
5.1 Kompakte Quantengruppen

linearen Abbildung \(\varepsilon : \mathcal{A} \to \mathbb{C} \), der Ko-Eins-Abbildung, so dass die folgenden Diagramme kommutieren:

\[
\begin{array}{ccc}
\mathcal{A} \otimes \mathbb{C} & \xleftarrow{\text{id} \otimes \varepsilon} & \mathcal{A} \otimes \mathcal{A} \\
\cong & & \Delta \\
\mathcal{A} & \xleftarrow{\text{id}} & \mathcal{A}
\end{array}
\]

das dazu “geflippte”

\[
\begin{array}{ccc}
\mathbb{C} \otimes \mathcal{A} & \xleftarrow{\varepsilon \otimes \text{id}} & \mathcal{A} \otimes \mathcal{A} \\
\cong & & \Delta \\
\mathcal{A} & \xleftarrow{\text{id}} & \mathcal{A}
\end{array}
\]

welche die Eigenschaften des Ko-Eins-Elements angeben, sowie die Ko-Assoziativität:

\[
\begin{array}{ccc}
\mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} & \xleftarrow{\Delta \otimes \text{id}} & \mathcal{A} \otimes \mathcal{A} \\
\text{id} \otimes \Delta & & \Delta \\
\mathcal{A} \otimes \mathcal{A} & \xleftarrow{\Delta} & \mathcal{A}
\end{array}
\]

Eine Ko-Algebra ist kokommutativ, wenn das Diagramm

\[
\begin{array}{ccc}
\mathcal{A} \otimes \mathcal{A} & \xleftarrow{\sigma} & \mathcal{A} \otimes \mathcal{A} \\
\Delta & & \Delta \\
\mathcal{A} & \xleftarrow{\text{id}} & \mathcal{A}
\end{array}
\]

kommutiert.
Ähnlich wie man für jede Algebra A die “opposite” Algebra A^\oplus mit dem Produkt $\mu \circ \sigma$, das automatisch wohldefiniert ist, definieren kann, ist auch zu jeder Ko-Algebra A eine “opposite” Ko-Algebra A_{\oplus} mit dem Koprodukt $\sigma \circ \Delta$ gegeben. Für das Koprodukt eines Elementes $a \in A$ wird in der Folge Sweedlers Kurz-Notation

$$\Delta(a) = a_{(1)} \otimes a_{(2)}$$

statt des länglichen $\Delta(a) = \sum_i a_{(1),i} \otimes a_{(2),i}$ verwendet.

Der Begriff eines Homomorphismus von Algebren muss an dieser Stelle wohl kaum ins Gedächtnis zurückgerufen werden.

Definition 5.1.3. Ein Homomorphismus von Ko-Algebren A, B ist eine lineare Abbildung

$$\varphi : A \to B$$

mit den zusätzlichen Eigenschaften

$$(\varphi \otimes \varphi) \circ \Delta_A = \Delta_B \circ \varphi \quad \text{und} \quad \epsilon_B \circ \varphi = \epsilon_A.$$

Eine Hopf-Algebra ist sowohl eine Algebra als auch eine Ko-Algebra, versehen mit Verträglichkeitsanforderungen an Produkt sowie Koprodukt, und mit einer zusätzlichen Struktur ausgestattet:

Definition 5.1.4. Eine **Hopf-Algebra** H über \mathbb{C} ist ein Vektorraum, so dass

2. Die Multiplikation $\mu : H \otimes H \to H$ und die Eins $\iota : \mathbb{C} \to H$ sind Homomorphismen von Ko-Algebren.
3. Die Komultiplikation $\Delta : H \to H \otimes H$ und die Ko-Eins $\epsilon : H \to \mathbb{C}$ sind Homomorphismen von Algebren.
4. Auf H existiert eine lineare Abbildung
$$S : H \to H,$$

die Antipode, so dass die folgenden Diagramme kommutieren:

$$
\begin{array}{ccc}
A \otimes A & \xrightarrow{s \otimes \text{id}} & A \otimes A \\
\downarrow \Delta & & \downarrow \mu \\
A & \xrightarrow{\iota \otimes \epsilon} & A
\end{array}
$$

und

Bemerkung 5.1.5. Das klassische Beispiel für eine Hopf-Algebra ist die Algebra $C(G)$ der Funktionen auf einer kompakten Lie-Gruppe G, mit dem punktweisen Produkt von Funktionen, $\alpha(\lambda) = \lambda \alpha$, $\alpha \in \mathbb{C}$ sowie, mit der Identifikation $C(G) \otimes C(G) \cong C(G \times G)$, die natürlich die Wahl eines entsprechenden Tensorproduktes von C^*-Algebren voraussetzt,

$$\Delta(f)(g_1, g_2) = f(g_1 g_2), \quad \epsilon(f) = f(e) \quad \text{und} \quad S(f)(g) = f(g^{-1})$$

mit e dem neutralen Element von G.

Bemerkung 5.1.6. Wenn H eine endlichdimensionale Hopf-Algebra ist, so kann man stets die zu H duale Hopf-Algebra H^* definieren. H^* ist dabei der duale Vektorraum zu H, mit der Paarung $\langle \cdot, \cdot \rangle : H^* \otimes H \to \mathbb{C}$. Das duale Produkt μ^* in H^* wird über

$$\langle h, \mu^*(\alpha \otimes \beta) \rangle = \langle h_{(1)}, \alpha \rangle \langle h_{(2)}, \beta \rangle \quad h \in H, \quad \alpha, \beta \in H^*$$

mit Hilfe des Koproduktes von H definiert, und das duale Koprodukt Δ^* analog mit Hilfe des Produktes μ:

$$\langle \mu(f \otimes h), \Delta^*(\alpha) \rangle = \langle f, \alpha_{(1)} \rangle \langle h, \alpha_{(1)} \rangle.$$

Wenn H unendlichdimensional ist, so lässt sich auf diese Weise immer noch ein Produkt auf H^* definieren. Die entsprechende Definition eines Koproduktes, funktioniert aber nur in Ausnahmefällen. Die auftretende Obstruktion rührt von der Tatsache her, dass $H^* \otimes H^*$ im Allgemeinen nur eine echte Unter Algebra von $(H \otimes H)^*$, wohin obige Definition von Δ^* abbildet, ist. Man kann aber trotzdem stets eine duale Hopf-Algebra definieren. Diese ist allerdings nicht auf dem Dualraum von H, also H^*, sondern auf der im Folgenden definierten Unteralgebra (bezüglich μ^*) H^d von H^*:

$$H^d \overset{def}{=} \{ \alpha \in H^* \mid \Delta^*(\alpha) \in H^* \otimes H^* \}.$$

Das sieht recht nahe liegend aus. Es ist aber nicht ganz einfach zu zeigen, dass die Abbildungen Δ^*, μ^* tatsächlich auf H^d wohldefiniert sind.

Im obigen Beispiel $C(G)$ ist $C(G)^d$ isomorph zur universellen Einhüllenden $\mathfrak{U}(\mathfrak{g})$ der Lie-Algebra \mathfrak{g} von G. Auf den Elementen $T \in \mathfrak{g}$, den primitiven Elementen der Hopf-Algebra $\mathfrak{U}(\mathfrak{g})$, ist dann

$$\Delta(T) = T \otimes 1 + 1 \otimes T, \quad \epsilon(T) = 0 \quad \text{und} \quad S(T) = -T.$$
Bemerkung 5.1.7. Ein Hopf-Ideal I einer Hopf-Algebra H ist ein zweiseitiges Ideal der Algebra H, mit den zusätzlichen Eigenschaften

$$\Delta(I) = I \otimes 1 + 1 \otimes I \quad \text{und} \quad \epsilon(I) = 0 \quad \text{und} \quad S(I) \subset I.$$

Bemerkung 5.1.8. Die für das Weitere wichtigste Bemerkung betrifft die Antipode S. Aus den beiden kommutierenden Diagrammen in 4. folgt, dass S ein *Anti-Isomorphismus* von H ist. Es gilt also

$$S(fh) = S(h)S(f) \quad f, h \in H.$$

(Einen Beweis findet man in [Deb].) Alternativ kann man S deshalb auch als Isomorphismus

$$S \colon H \to H^\sim$$

von Hopf-Algebren auffassen. (Ein Isomorphismus von Hopf-Algebren ist eine lineare Abbildung, die sowohl ein Algebra-Homomorphismus, als auch ein Ko-Algebra-Automorphismus ist.) Folglich ist S^2 ein Automorphismus von H. Für kommutative Hopf-Algebren, also die Funktionen auf Gruppen, ist stets $S^2 = \text{id}$, ebenso wie für kokommutative Hopf-Algebren, also die universellen Einhüllenden von Lie-Algebren. Im Allgemeinen ist aber $S^2 \neq \text{id}$.

Die bei weitem wichtigste Eigenschaft von Hopf-Algebren, zumindest im Zusammenhang mit H-symmetrischen spektralen Tripeln, rührt aber von ihrer Darstellungstheorie her. Diese hat nämlich eine ähnliche Struktur wie diejenige von Gruppen. Insbesondere ist es möglich Darstellungen zu tensorieren, ganz im Gegensatz zu beliebigen Algebren, wo mit π_1, π_2 wegen der fehlenden Linearität $\pi_1 \otimes \pi_2$ keine Darstellung definiert.

Definition 5.1.9. Sei H eine Hopf-Algebra über \mathbb{C}, V ein komplexer Vektorraum. V ist ein Links-H-Modul wenn eine lineare Abbildung

$$\lambda \colon H \otimes V \to V$$

existiert, so dass die folgenden Diagramme kommutieren:

\[
\begin{array}{ccc}
H \otimes H \otimes V & \xrightarrow{\mu \otimes 1_V} & H \otimes V \\
\downarrow \mathbb{V} \otimes \lambda & & \downarrow \lambda \\
H \otimes V & \xrightarrow{\lambda} & V
\end{array}
\]

also die Verträglichkeit mit dem Produkt in H, sowie die analoge Eigenschaft für die Eins:
Ein Rechts-H-Modul wird analog definiert.

Dabei wird natürlich nur die Algebra-Struktur von H verwendet. In der Folge wird zumeist statt $\lambda(h \otimes v)$ einfach $h \triangleright v$ geschrieben, wenn immer dies nicht zu Missverständnissen führen kann.

Definition 5.1.10. Sei H ein Hopf-Algebra über \mathbb{C}, V ein komplexer Vektorraum. V ist ein Links-H-Komodul wenn eine lineare Abbildung

$$\rho : V \to H \otimes V$$

existiert, so dass die folgenden Diagramme kommutieren:

$$
\begin{array}{cccc}
H \otimes H \otimes V & \xrightarrow{\Delta \otimes 1_V} & H \otimes V \\
\Downarrow 1_V \otimes \rho & & & \Updownarrow \rho \\
H \otimes V & \xleftarrow{\rho} & V
\end{array}
$$

also die Verträglichkeit mit dem Produkt in H, sowie die analoge Eigenschaft für die Eins:

$$
\begin{array}{cccc}
\mathbb{C} \otimes V & \xrightarrow{c \otimes 1_V} & H \otimes V \\
\Downarrow \cong & & & \Downarrow \rho \\
V & \xleftarrow{\rho} & V
\end{array}
$$

Ein Rechts-H-Komodul wird analog definiert.

In der Folge werden zumeist aber nur H-Moduln verwendet. Statt H-Modul wird oft auch einfach von einer Darstellung von H gesprochen.
Bemerkung 5.1.11. Wenn V ein H-Modul ist, so ist V automatisch auch ein H^*-Komodul. Jeder H-Komodul ist auch ein H^*-Modul. Im letzteren Fall zum Beispiel ist eine Wirkung von H^* auf V als

$$\alpha \triangleright v = \langle \alpha, h_{(1)} \rangle v_{[2]}$$

definiert, wobei $\lambda(v) = h_{(1)} \otimes v_{[2]}$ ist.

Bemerkung 5.1.12. Sind zwei beliebige Links-H-Moduln V, W gegeben, so ist auch $V \otimes W$ ein Links-H-Modul mit der einfachen Definition

$$h \triangleright (v \otimes w) = (h_{(1)} \triangleright v) \otimes (h_{(2)} \triangleright w).$$

Wegen der Linearität des Koproduktes definiert dies eine *lineare* Abbildung von H in die Endomorphismen von $V \otimes W$. Die Darstellungs-Eigenschaft ist ebenfalls offensichtlich, weil Δ ein Algebrenhomomorphismus von H ist.

Bemerkung 5.1.13. Die Antipode S von H ermöglicht die Definition einer Darstellung von H auf dem Dualraum V^* jeder Darstellung V von H gemäß

$$\langle h \triangleright \xi, v \rangle = \langle \xi, S(h) \triangleright v \rangle,$$

mit $h \in H$, $\xi \in V^*$ und $v \in V$.

Man kann die Paarung $\langle \cdot, \cdot \rangle$ auch als lineare Abbildung von $V^* \otimes V$ nach \mathbb{C} auffassen. Auf dem Tensorprodukt ist aber gemäß der obigen Bemerkung stets eine Darstellung von H definiert, und es ist für das Folgende wichtig, deren Verhalten unter $\langle \cdot, \cdot \rangle$ zu studieren. Dazu sei noch einmal an die Antipoden-Eigenschaft

$$(\mu \circ (S \otimes \text{id}) \Delta)(h) = \epsilon(h)$$

erinnert. Es ist dann:

$$h \triangleright \langle \xi, v \rangle = \langle h_{(1)} \triangleright \xi, h_{(2)} \triangleright v \rangle = \langle \xi, S(h_{(1)}) \triangleright h_{(2)} \triangleright v \rangle = \langle \xi, (\mu \circ (S \otimes \text{id}) \circ \Delta)(h) \triangleright v \rangle = \epsilon(h)(\xi, v).$$

Die obige Darstellung von H auf V^* ist also mit der trivialen, eindimensionalen Darstellung von H, welche ja durch $\epsilon(h)$ gegeben ist, verträglich. Insbesondere existiert somit stets eine Darstellung von H auf den Endomorphismen $\text{End}(V) \cong V \otimes V^*$ einer Darstellung V, welche für $O \in \text{End}(V)$ explizit als

$$(h \triangleright O)v = h_{(1)} \triangleright O(S(h_{(2)}) \triangleright v)$$

gesteuert ist. Diese Darstellung von H auf den Operatoren einer gegebenen Darstellung auf V ist in dem im Folgenden erläuterten Sinn mit der Wirkung der Operatoren auf V vertauscht:
Für das Verständnis der folgendenen Rechnung sollte man sich noch einmal die Ko-
Assoziativität, \((\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta\), die auch als

geschrieben werden kann, ins Gedächtnis zurückrufen. Genau wie oben, fasst man
nun den Ausdruck \(Ov\) für einen beliebigen Operator \(O\) als Element von \(\text{End}(V) \otimes V\),
welches mit der entsprechenden Tensorprodukt-Darstellung versehen ist, auf.

Proposition 5.1.14. Es ist stets

\[
(h_{[1]} \triangleright O)(h_{[2]} \triangleright v) = h \triangleright (Ov).
\]

Beweis:

\[
(h_{[1]} \triangleright O)(h_{[2]} \triangleright v) = h_{[1]} \triangleright (O(S(h_{[1]}[2]) \triangleright h_{[2]} \triangleright v)) = h_{[1]} \triangleright (O(S(h_{[2]}[1]) \triangleright h_{[2]} \triangleright v)) = h_{[1]} \triangleright (O(\varepsilon(h_{[2]}[2]))) = (\varepsilon \otimes \varepsilon) \circ \Delta \circ (Ov) = h \triangleright (Ov).
\]

Diese Bemerkung wird später wichtig, weil damit zum Beispiel auf den Endomor-
phis men von \(H \otimes V\) eine Darstellung von \(H\) definiert ist. Es macht daher insbesondere
Sinn von einem unter \(H\) invarianten Projektion für einen endlich erzeugten projekti-
ven Modul zu sprechen. Invarianz bedeutet dabei \(h \triangleright p = \varepsilon(h)p\). Das entspricht der
trivialen, eindimensionalen Darstellung von \(H\).

Wenn der Vektorraum \(V\) mit zusätzlichen Strukturen ausgestattet ist, so wird man na-
türlich bemüht sein, die (Ko-)Modul-Struktur mit diesen verträglich zu wählen. Be-
sonders interessant ist selbstverständlich der Fall, wenn \(V\) selbst eine Algebra ist. Man
erhält dann die angesprochene Verallgemeinerung der Wirkung einer Gruppe als Au-
tomorphismen auf eine Algebra.

Definition 5.1.15. Eine unitale Algebra \(\mathcal{A}\) heißt **Links-\(H\)-Modul-Algebra**, wenn sie
ein Links-Modul für die Hopf-Algebra \(H\) ist, und wenn zusätzlich für alle \(h \in H\) und
\(a, b \in \mathcal{A}\) die Bedingungen

\[
h \triangleright (ab) = (h_{[1]} \triangleright a)(h_{[2]} \triangleright b) \quad \text{und} \quad h \triangleright 1_{\mathcal{A}} = \varepsilon(h)1_{\mathcal{A}}
\]

erfüllt sind. **Rechts-\(H\)-Modul-Algebren** sind analog definiert.

Die Bedingung an die Wirkung von \(H\) auf das Eins-Element von \(H\) kann man so
auﬀassen, dass \(1 \in \mathcal{A}\) eine triviale Darstellung unter \(H\) bildet.

Definition 5.1.16. Eine unitale Algebra \(\mathcal{A}\) heißt **Links-\(H\)-Komodul-Algebra** wenn
sie ein Links-Kooodul für die Hopf-Algebra \(H\) ist, und wenn zusätzlich für alle \(a, b \in \mathcal{A}\)
die Bedingungen

\[
\rho(ab) = \rho(a)\rho(b) \quad \text{und} \quad \rho(1_{\mathcal{A}}) = 1_H \otimes 1_{\mathcal{A}}
\]

erfüllt sind, wenn also \(\rho\) ein Algebrenhomomorphismus ist. **Rechts-\(H\)-Komodul-Algebren**
sind analog definiert.

Bemerkung 5.1.17. Die Bedingung an die Verträglichkeit des Koproduktes von H mit dem Produkt einer H-Modul-Algebra wird im Wesentlichen durch das Tensorprodukt von Darstellungen von H diktiert. Das Produkt von \mathcal{A} ist ja eine Abbildung von $\mathcal{A} \otimes \mathcal{A}$ nach \mathcal{A}, und die entsprechende Bedingung stellt dann sicher, dass mit der Tensorproduktdarstellung $\lambda \otimes$ zu der Darstellung λ von H auf \mathcal{A} die Gleichung

$$\mu \circ \lambda \otimes = \lambda \circ \mu$$

gilt.

Es muss aber darauf hingewiesen werden, dass die natürliche Darstellung einer Hopf-Algebra auf sich selbst im Allgemeinen nicht kovariant ist. Für die universelle Einhüllende einer Lie-Algebra ist ja zum Beispiel

$$L_i(L_jL_K) \neq (L_iL_j)L_K + L_j(L_iL_K).$$

Demgegenüber ist die adjungierte Darstellung

$$h \triangleright k = h_{(1)} \cdot k \cdot S(h_{(2)})$$

einer Hopf-Algebra auf sich selbst immer kovariant. Zum Beispiel ist für $\mathcal{U}(g)$

$$L_i \triangleright L_K = [L_i, L_K],$$

und die Kovarianz-Eigenschaft folgt dann aus der Leibniz-Regel für den Kommutator (in $\mathcal{U}(g)$). Die meisten, in der Folge aufgelisteten Eigenschaften von solchen kovarianten Darstellungen kann man sich anhand dieses Beispiels plausibel machen (was allerdings dem Leser überlassen bleibt).

Bemerkung 5.1.18. Wenn \mathcal{A} eine H-Modul-Algebra ist, so ist die opposite Algebra A° mit

$$h^\circ \triangleright a^\circ \overset{def}{=} (S(h) \triangleright a)^\circ$$

automatisch eine H°_\circ-Modul-Algebra. Das wird später sehr wichtig werden.

Wenn man Hopf-Algebren C^*-algebraisch beschreiben will, so benötigt man natürlich noch eine Involution:

Definition 5.1.19. Eine Hopf-$*$-Algebra ist eine Hopf-Algebra H, die eine $*$-Algebra ist, so dass die Komultiplikation $\Delta : H \rightarrow H \otimes H$ und die Ko-Eins $\epsilon : H \rightarrow \mathbb{C}$ (mit den natürlichen $*$-Strukturen auf $H \otimes H$ und \mathbb{C}) $*$-Homomorphismen sind.

Zur Erinnerung: Ein $*$-Homomorphismus zwischen zwei $*$-Algebren A, B ist ein Algebrenhomomorphismus φ mit der Eigenschaft $\varphi(a^*) = \varphi(a)^*$, $a \in A$.

Bemerkung 5.1.20. Aus den Bedingungen an Δ und ϵ folgt (mit etwas Mühe)

$$S(a)^* = S^{-1}(a^*).$$

Definition 5.1.21. Eine kovariante Darstellung von H auf einer $*$-Algebra A heißt unitär, wenn für jedes $a \in A$ und alle $h \in H$ die Gleichung

$$h \triangleright a^* = (S(h^*) \triangleright a)^*$$

erfüllt ist.

(Diese Definition kann man sich am ehesten plausibel machen, wenn man an die Darstellung einer Hopf-Algebra auf dem Dualraum eines Darstellungsraums denkt. Falls man diese Räume (A und A^*) identifizieren kann, so ist die obige Definition äquivalent zu der Forderung

$$\langle a, h \triangleright b \rangle = \langle h^* \triangleright a, b \rangle$$

die schon etwas vertrauter ist.) Es bleibt dem Leser überlassen, zu überprüfen, dass die adjungierte Darstellung einer Hopf-$*$-Algebra auf sich selbst immer unitär ist, was in der Folge aber nicht benötigt wird.

5.1.2 Kompakte Quantengruppen

Definition 5.1.22. Ein Paar $G = (A, \Delta)$, bestehend aus einer separablen unitalen C^*-Algebra A und einem unitalen $*$-Algebra-Homomorphismus $\Delta : A \to A \otimes A$ heißt kompakte Quantengruppe wenn die folgenden beiden Bedingungen erfüllt sind:

1. Δ ist koassoziativ.

2. Die beiden Mengen

$$B_L = \{(b \otimes 1)\Delta(a) \; ; \; a, b \in A\} \quad \text{(5.1)}$$
$$B_R = \{(1 \otimes b)\Delta(a) \; ; \; a, b \in A\} \quad \text{(5.2)}$$

sind dichte Untermengen von $A \otimes A$.
Bemerkung 5.1.23. Wenn die Algebra \mathcal{A} kommutativ ist, also nach dem Gelfand-Naimark-Theorem ein Raum X existiert mit $\mathcal{A} = C(X)$, so ist X eine kompakte Gruppe, das wird später noch klar werden. Die Gruppenstruktur auf den reinen Zuständen von \mathcal{A} kann dabei mit Hilfe des Konvolutionsprodukts

$$(\xi_1 \ast \xi_2)(a) = (\xi_1 \otimes \xi_2)\Delta(a) \quad \xi_1, \xi_2 \in X \quad a \in \mathcal{A}$$

rekonstruiert werden, von dessen Wohldefiniertheit man sich leicht selbst überzeugt, die Assoziativität dieses Produkts folgt aus der Koassoziativität von Δ. Insbesondere ist dann für die entsprechenden Gelfand-Transformierten \hat{a} von Algebra-Elementen $a \in \mathcal{A}$

$$\Delta(\hat{a})(\xi_1, \xi_2) = \hat{a}(\xi_1 \ast \xi_2).$$

Die Dichtheits-Bedingung (5.1) besagt dann, dass $\hat{c}_1(\xi_1)\hat{c}_2(\xi_2)$ für beliebige Elemente $c_1 \otimes c_2$ von $\mathcal{A} \otimes \mathcal{A}$ stets als konvergente Reihe von Termen der Form $\hat{b}(\xi_1)\hat{a}(\xi_1 \ast \xi_2)$ geschrieben werden kann. Das ist sicher nur dann möglich, wenn die linke Kürzungseigenschaft

$$\xi \ast \xi_1 = \xi \ast \xi_2 \implies \xi_1 = \xi_2$$

erfüllt ist, denn nur dann ist für jedes ξ die Abbildung

$$\tau_\xi : C(X) \to C(X)$$

$$\hat{a}(\xi_1) \mapsto \tau_\xi \hat{a}(\xi_1) = \hat{a}(\xi \ast \xi_1)$$

surjektiv. Die Bedingungen (5.1),(5.2) fordern also im wesentlichen die (beidseitige) Kürzungseigenschaft des Konvolutionsprodukts \ast.

Es ist sehr bemerkenswert, dass man erst hier, in dem C^*-algebraischen Rahmen, erkannte, dass jeder kompakte Raum, der eine assoziative, stetige Verknüpfung mit dieser Kürzungseigenschaft besitzt, automatisch eine kompakte Gruppe ist. Die Existenz des neutralen Elements, sowie die Existenz und Stetigkeit der Inversion müssen nicht gefordert werden.

Diese kurze Definition bedarf nun natürlich einer entsprechend langen Erläuterung. Vor allem muss herausgearbeitet werden, dass und warum aus den beiden geforderten Eigenschaften von Δ gemeinsam mit den Eigenschaften einer C^*-Algebra die Existenz einer Hopf-Algebra A folgt, die dicht in \mathcal{A} liegt. Die Beweise sind viel zu lang und zu technisch, als dass man sie an dieser Stelle sinnvoll wiederholen kann, aber zumindest die entscheidenden Ideen der Konstruktion sollten erklärt werden.

Schon in der (kommutativen) Theorie der kompakten Gruppen, folgen die meisten Eigenschaften der Darstellungstheorie aus der Existenz des Haar-Maßes, welchem auch hier die zentrale Rolle zukommt.

Satz 5.1.24. Sei $G = (\mathcal{A}, \Delta)$ eine kompakte Quantengruppe. Dann existiert ein eindeutiger Zustand (ein positives, normiertes lineares Funktional) h auf \mathcal{A} mit

$$(id \otimes h)\Delta(a) = (h \otimes id)\Delta(a) = h(a) \cdot 1 \in \mathcal{A} \quad \forall a \in \mathcal{A}.$$

h heißt das Haar-Maß von G.

H-symmetrische spektrale Tripel
Bemerkung 5.1.25. Man kann sich schon denken, dass h im Fall eines kommutativen $\mathcal{A} = C(X)$ das Haar-Maß der kompakten Gruppe X ist, also

$$h(a) = \int_X d\mu(\xi) \hat{a}(\xi).$$

Damit lässt sich auch die Invarianz-Eigenschaft erklären: Es ist dann nämlich wegen der Invarianz des Haar-Maßes:

$$(\text{id} \otimes h) \Delta(\hat{a})(\xi_1) = \hat{a}_{(1)}(\xi_1) \int_X d\mu(\xi) \hat{a}_{(2)}(\xi)$$

$$= \int_X d\mu(\xi) \hat{a}(\xi_1 \ast \xi)$$

$$= \int_X d\mu(\xi) \hat{a}(\xi)$$

$$= h(a) \cdot 1.$$

Es ist der Beweis dieses Satzes, bei dem die Eigenschaften der C^*-Algebra ins Spiel kommen. Woronowicz konstruiert, analog zum obigen kommutativen Beispiel, das Haar-Maß als Linearkombination von reinen Zuständen (Integral), sprich: als unendliche Reihe, deren Konvergenz durch die Norm-Eigenschaften von \mathcal{A} gesichert wird. Aus der Existenz dieses Haar-Maßes kann man dann auf die folgende nützliche Eigenschaft schließen:

Mit “unitäre Darstellung” ist hier, der in der Literatur üblichen Konvention folgend, eigentlich $*$-Ko-Darstellung gemeint. Diese Begriffsbildung bietet sich für Quantengruppen an, was durch die folgende Wiederholung eines kleinen Teils der harmonischen Analyse auf kompakten Gruppen plausibel gemacht werden soll. Sie dient zugleich als Vorbereitung auf die weiter unten folgenden Aussagen.

Sei X eine kompakte Gruppe. Dann kann man eine N_α-dimensionale irreduzible, unitäre Darstellung

$$u^\alpha : X \to M_{N_\alpha}(\mathbb{C})$$

offenbar als N^2-Tupel von stetigen Funktionen $u^\alpha_{ij} \in C(X)$ auffassen. (Für $SU(2)$ sind das zum Beispiel die Matrix-Einträge $D^{(l)}_{m,m'}(\theta, \phi, \chi)$ der bekannten D-Matrizen.) Es ist wohlbekannt, dass die Algebra $C(X)$ unter der rechtsregulären Darstellung in eine direkte Summe aller irreduziblen Darstellungen zerlegt werden kann, wobei jede Darstellung genau einmal auftritt. Mit anderen Worten: Die Funktionen u^α_{ij} bilden eine lineare Basis von \mathcal{A}. Darüber hinaus ist für eine Darstellung per Definition $u(\xi_1)u(\xi_2) = u(\xi_1 \ast \xi_2)$ und das Koprodukt von $C(X)$ hat auf dieser Basis folglich die besonders einfache Form

$$\Delta(u^\alpha_{ij}) = \sum_k u^\alpha_{ik} \otimes u^\alpha_{kj}.$$
(Nebenbei bemerkt: Das Produkt der Algebra-Elemente \(u_{ij}^\alpha \) untereinander entspricht dann dem Tensorieren von Darstellungen. Man kann deshalb die Algebra \(C(X) \) als die Menge aller Darstellungen der Gruppe, versehen mit der direkten Summe und dem Tensorprodukt als Verknüpfungen, ansehen. Umgekehrt kann man die Gruppe aus dieser Hopf-Algebra auf dem gleichen Weg rekonstruieren. Diese Beobachtung ist im Wesentlichen der Inhalt der Tannaka-Krein-Dualität für kompakte Gruppen.)

Der Darstellungsraum \(C^{N\alpha} \) ist vom Standpunkt der Hopf-Algebra \(\mathfrak{g} \) ein Links-Ko-Modul mit

\[
\lambda_x(e_i^\alpha) = \sum_j u_{ij}^\alpha \otimes e_j^\alpha
\]
auf der entsprechenden Basis \(e_i^\alpha \) von \(C^{N\alpha} \). Es existiert (wie für Hopf-Algebra) natürlich auch eine Rechts-Ko-Modul-Struktur, die hier wohl kaum explizit angegeben werden muss.

Mit dieser Ko-Wirkung von \(C(X) \) existiert dann automatisch auch eine Wirkung der dualen Hopf-Algebra gemäß

\[
x \triangleright e_i^\alpha = \sum_j \langle x, u_{ij}^\alpha \rangle \otimes e_j^\alpha.
\]

Damit gelangt man dann zur ursprünglichen Definition der unitären Darstellungen von kompakten Quantengruppen:

Sie sind als \(\ast \)-Darstellungen der dualen Hopf-Algebra \(C(X)^d \) definiert.

(Das macht in der Terminologie ja auch Sinn, weil man von Quantengruppen sprechen möchte, und nicht von ‘quantisierten Funktionenalgebren über kompakten Gruppen’.)

Proposition 5.1.27. Sei \(G = (\mathcal{A}, \Delta) \) eine kompakte Quantengruppe. Es existiert eine lineare Basis \(u_{kl}^\alpha \) in \(\mathcal{A} \), wobei \(\alpha \) die irreduziblen, unitären Ko-Darstellungen von \(G \) parametrisiert, so dass

\[
\sum_k u_{ik}^\alpha (u_{jk}^\alpha)^* = \delta_{ij}
\]

\[
\sum_k (u_{ik}^\alpha)^* u_{kj}^\alpha = \delta_{ij}
\]

ist. Des Weiteren gilt für diese Basis

\[
\Delta(u_{ij}^\alpha) = \sum_k u_{ik}^\alpha \otimes u_{kj}^\alpha.
\]

Damit ist man dann schon ein großes Stück weiter, denn von nun an kann man mit der Basis \(u_{kl}^\alpha \) weiterargumentieren, und damit den Hauptsatz beweisen:

Satz 5.1.28. Sei \(G = (\mathcal{A}, \Delta) \) eine kompakte Quantengruppe und sei \(\mathcal{A} \) die Menge aller Linearkombinationen von Matrix-Elementen aller endlichdimensionalen unitären Darstellungen von \(G \). Dann gilt:

1. \(\mathcal{A} \) ist eine dichte \(\ast \)-Unteralgebra von \(\mathcal{A} \) und

\[
\Delta(\mathcal{A}) \subset \mathcal{A} \otimes_{alg} \mathcal{A},
\]

wobei mit \(\otimes_{alg} \) das algebraische Tensorprodukt (ohne Norm-Abschluss) bezeichnet wurde.
2. \((A, \Delta|_{\mathcal{A}})\) ist eine Hopf-\(*\)-Algebra. Die Antipode und die Ko-Eins dieser Hopf-\(\mathcal{A}\)-Algebra sind als

\[
\begin{align*}
\epsilon(u^\alpha_{ij}) &= \delta_{ij} \\
S(u^\alpha_{ij}) &= (u^\alpha_{ji})^*
\end{align*}
\]

gegeben.

Es sei noch erwähnt, dass Woronowicz die obige Antipode mit Hilfe des Tomita-Takesaki-Theorems konstruiert. Diese Tatsache wird in der Folge aber nicht verwendet; sie spielt aber eine große Rolle bei der Verallgemeinerung der kompakten Gruppen zu lokalkompakten Quantengruppen, bei denen die Algebra dann also nicht mehr unital ist ([KV1], [KV2]).

5.2 \(H\)-symmetrische spektrale Tripel

Die soeben eingeführten kompakten Quantengruppen eignen sich hervorragend als Symmetrien von spektralen Tripeln. In diesem Abschnitt sollen die allgemeinen Definitionen hierzu präsentiert werden. Theoreme, die die Existenz dieser Strukturen unter bestimmten Voraussetzungen zeigen, konnten wir leider nicht beweisen. Im klassischen, kommutativen Fall ist allerdings wohlbekannt (und deshalb hier nicht von Interesse), dass orientierbare, homogene Räume stets eine invariante Metrik besitzen. In diesem Fall existieren also immer \(\mathcal{U}(g)\)-symmetrische spektrale Tripel. Eigenschaften dieser (bald definierten) \(H\)-symmetrischen spektralen Tripel lassen sich (zur Zeit) ebenfalls nur an konkreten Beispielen beweisen. Aus diesem Grund wird dieser Abschnitt der mit Abstand kürzeste der ganzen Arbeit sein, das “Auge des Sturms” gewissermaßen.

Gegeben sei eine kompakte Quantengruppe \(G\), ihre duale Hopf-Algebra \(H\), sowie eine Links-\(H\)-Modul-Algebra \(\mathcal{A}\).

Wenn man voraussetzt, dass auf dem Hilbertraum des spektralen Tripels eine Darstellung von \(H\) existiert, so induziert diese eine Wirkung von \(H\) auf die Operatoren auf \(\mathcal{H}\) und somit auch auf \(\pi(\mathcal{A})\), wobei aber a priori nicht klar ist, dass diese Wirkung nicht aus \(\mathcal{A}\) herausführt. Es ist daher eine natürliche zusätzliche Forderung, dass die Wirkung von \(H\) auf \(\pi(\mathcal{A})\) mit der ursprünglichen (Wirkung von \(H\) auf \(\mathcal{A}\)) übereinstimmt. Als Analogon einer invarianten Metrik werden der Dirac-Operator \(D\), und \(\gamma\) aus dem Kommutanten von \(H\) gewählt.

Etwas subtiler ist nur die Symmetrie-Bedingung an die Realitätstruktur \(J\): Die Realitätstruktur induziert eine Darstellung der opposite Algebra \(\mathcal{A}^o\) von \(\mathcal{A}\) auf \(\mathcal{A}\). Mit der Wirkung von \(H\) auf \(\mathcal{A}\) existiert stets auch eine Wirkung von \(H^o\), also der Hopf-Algebra mit der umgekehrten Multiplikation und Komultiplikation wie diejenige von \(H\) (Eins, Ko eins und Antipode sind gleich), auf die Algebra \(\mathcal{A}^o\),

\[
h^o \triangleright a^o = (S(h) \triangleright a)^o.
\]
Die Antipode \(S \) von \(H \) ist in Woronowiczs Theorie eine Antiusomorphismus zwischen \(H \) und \(H^\alpha \), die in zyklischen, separierenden Darstellungen von dem antilinearen Operator der Tomita-Takesaki-Theorie induziert wird. Eine zyklische separierende Darstellung von \(\mathcal{A} \) wird aber im Allgemeinen nicht zyklisch und separierend für die Algebra \(H \), die ja viel größer ist, sein. Deshalb kann man Woronowicz’ Konstruktion hier nicht direkt übertragen. (Aus diesem Grund wurde sie oben auch nicht erläutert.)

Andererseits wird durch die Realitätsstruktur \(J \) und die Links-Wirkung von \(\mathcal{H} \) auf \(\mathcal{A} \) automatisch eine Rechts-Wirkung von \(H \) auf \(\mathcal{A}^\alpha \) induziert, die man aber auch als Links-Wirkung der opposite Hopf-Algebra \(H^\alpha \) auffassen kann. Es ist dann eine natürliche Anforderung, dass diese Darstellung mit der von der Antipode von \(H \) herrührenden übereinstimmt, und somit

\[
J h^* \triangleright a^* J^{-1} = J h^* J^{-1} \triangleright J a^* J^{-1} = S(h) \triangleright a^\alpha
\]
gilt. Es sollte also \(J h^* J^{-1} = S(h) \) sein.

Zumindest in den bereits besprochenen Beispielen, aber auch in allen, die noch vorge stellt werden, erweist sich diese Forderung sowohl als erfüllbar als auch als nützlich. Wenn man voraussetzt, dass die kovariante Darstellung von \(H \) auf \(\mathcal{A} \) unitär ist, ist die obige Bedingung im Übrigen äquivalent zu der Forderung, dass auch die Darstellung von \(H \) auf dem Hilbertraum \(\mathcal{H} \) unitär ist.

Definition 5.2.1. Ein spektrales Tripel \((\mathcal{H}, \mathcal{A}, D, \gamma, J) \) heißt \(H \)-symmetrisch (oder \(H \)-kovariant), wobei \(H \) die duale Hopf-Algebra zu einer kompakten Quantengruppe \(G \) ist,

\[
H = G^*,
\]

wenn zusätzlich die folgenden Bedingungen erfüllt sind:

- Die Algebra \(\mathcal{A} \) ist eine Links-\(H \)-Modul-Algebra und die Darstellung von \(H \) auf \(\mathcal{A} \) ist unitär.
- Auf dem Hilbertraum \(\mathcal{H} \) existiert eine Darstellung von \(H \). Die Darstellung von \(\mathcal{A} \) ist kovariant bezüglich dieser Darstellung, das heißt es ist für alle \(h \in H \), alle \(a \in \mathcal{A} \) und alle \(\psi \in \mathcal{H} \):

\[
h \triangleright (a \psi) = (h_{(1)} \triangleright a) \left(h_{(2)} \triangleright \psi \right).
\]

- Der Dirac Operator kommutiert mit allen Elementen \(h \in H \):

\[
[D, h] = 0
\]
- Die Graduierung \(\gamma \) kommutiert mit allen \(h \in H \):

\[
[\gamma, h] = 0
\]
- Die Realitätsstruktur \(\gamma \) implementiert die Antipode von \(H \) auf dem Hilbertraum \(\mathcal{H} \), das heißt, es gilt für alle \(h \in H \)

\[
J h^* J^{-1} = S(h)
\]
Bemerkung 5.2.2. Insbesondere sind die beiden zuvor besprochenen spektralen Tripel für die Sphäre und den nichtkommutativen Torus \(U(su(2)) \)-symmetrisch beziehungsweise \(U(u(1) \oplus u(1)) \)-symmetrisch. Wegen des Koproduktes \(\Delta(L_i) = L_i \otimes 1 * 1 \otimes L_i \) übersetzt sich die Kovarianz-Bedingung für die Darstellung der Algebra in

\[
L_i(a\psi) = (L_i a)\psi + a(L_i \psi),
\]
also die Leibnizregel, beziehungsweise die Kovarianz-Bedingung für \(SU(2) \)-homogene Vektorbündel.

Die Symmetrie-Bedingung an die Realitätsstruktur wurde bei der Sphäre bereits vorgesehen, beim Torus ist sie besonders einfach. Die Antipode ist auf den Generatoren einer Lie-Algebra als \(S(L_i) = -L_i \) gegeben. Beim Torus ist \(L_k = -i \frac{\partial}{\partial \varphi^i} \), während \(J \) die komplexe Konjugation ist. Dann ist klarerweise

\[
J L_i J = L_i = S(L_i).
\]

Die Kommutationsregeln für \(D \) und \(\gamma \) sind per Konstruktion ebenfalls erfüllt.

Bemerkung 5.2.3. In dem Begriff des \(H \)-symmetrischen spektralen Tripels, der als Verallgemeinerung der Wirkung von Lie-Algebren von kompakten Gruppen aufzufassen ist, wird mit der \textit{Wirkung} von Hopf-Algebren gearbeitet. Die universellen Einhüllenden von solchen Lie-Algebren sind natürlich keine kompakten Quantengruppen (die duale Hopf-Algebra \(C(G) \) ist kompakt). Für den zur Motivation verwendeten Zusammenhang zwischen der Antipode und der Realitätsstruktur macht das aber keinen Unterschied.

Man kann das Bild auch dualisieren und zu Kowirkungen übergehen. Der entsprechende Begriff des \(H \)-kosymmetrischen spektralen Tripels wird gelegentlich im Kapitel über diskrete Hopf-Symmetrien angesprochen – und definiert. Im Wesentlichen ersetzt man die Bedingung einer \(H \)-Modul-Algebra durch die einer \(H \)-Komodul-Algebra. Die Invarianz von Operatoren, also etwa \(D \), übersetzt sich, mit der Kowirkung \(\rho : \mathcal{H} \rightarrow H \otimes \mathcal{H} \) dann in:

\[
\rho(D\psi) = (\text{id}_H \otimes D)\rho(\psi).
\]

Es ist in der Praxis aber sehr viel bequemer mit Wirkungen als mit Kowirkungen zu arbeiten. Für allgemeine, unendlichdimensionale Quantengruppen \(H \) ist auch die Dualisierung von \(H \) recht subtil.

Für endlichdimensionale Hopf-Algebren ist das aber kein Problem, deshalb wird die genaue Definition in das entsprechende Kapitel verschoben. Dann kann man nämlich auch ein paar Eigenschaften beweisen. Insbesondere wird dort bewiesen werden, dass in diesem Fall ein spektrales Tripel \(H \)-symmetrisch ist wenn und nur wenn es \(H^* \)-kosymmetrisch ist.

5.3 But....

Auch ein Scheitern, wenn es nur endgültig ist, kann einen Schritt nach Vorne bedeuten.
Max Planck

Bisher wurden nur $\mathcal{U}(g)$-symmetrische spektrale Tripel, bei denen G also eine kompakte Lie-Gruppe ist, betrachtet. In diesem Abschnitt soll nun ein erster, allerdings missglückter Versuch vorgestellt werden, ein spektrales Tripel mit einer nichtkommutativen Hopf-Symmetrie zu konstruieren. Das Hauptaugenmerk der Darstellung richtet sich dabei aber nicht auf die Tatsache des Scheiterns. Vielmehr bietet das folgende Beispiel eine gute Gelegenheit zu illustrieren, dass man mit Hilfe einer kompakten Quanten gruppe tatsächlich systematisch auf ein spektrales Tripel, das allerdings nicht existieren muss, hinarbeiten kann. Die Konstruktion verläuft dabei völlig parallel zu derjenigen im Fall der Sphäre, mit dem Unterschied, dass sie hier in eine Sackgasse führt. Es ist aber keineswegs ausgeschlossen, dass dieser Algorithmus bei anderen Beispielen, die es natürlich zu finden gilt, konvergieren wird.

Sei q eine reelle Zahl, die der Einfachheit halber, und ohne Beschränkung der Allgemeinheit, aus dem Intervall $0 < q \leq 1$ entnommen ist.

Definition 5.3.1. [Po] Die (Standard-) Quantensphäre S^2_q ist die C^*-Vollständigung der von den drei Operatoren a, a und b, mit den Relationen

$$\bar{aa} + b^2 = 1, \quad ba = q^2 ab, \quad q^2 a\bar{a} + \frac{1}{q^2} b^2 = q^2, \quad \bar{ab} = q^2 b\bar{a}$$

erzeugten Algebra.

Diese Algebra ist ein Spezialfall der von Podles eingeführten zweiparametrischen Familie von Quantensphären. Für $q = 1$ ist sie offensichtlich isomorph zur kommutativen Algebra der Funktionen auf der zweidimensionalen Sphäre S^2.

Streng genommen ist die obige Definition noch nicht ganz konsistent. Ähnlich wie im Fall der Sphäre genügen die algebraischen Relationen auch in diesem Fall nicht um eine eindeutige C^*-Norm auf der Algebra zu fixieren, und somit ist auch die C^*-Vollständigung nicht eindeutig definiert. Genau wie beim Torus, kann man aber eine eindeutige Norm definieren, wenn man eine geeignete Darstellung von S^2_q auf einem Hilbertraum wählt. Diese Darstellung sucht man nun wieder indem man die Symmetrien der Algebra S^2_q ausnutzt.

Im Gegensatz zur kommutativen Sphäre sind die Symmetrien von S^2_q für $q \neq 1$ aber nicht durch eine kokommutative Hopf-Algebra – also eine Lie-Algebra – beschrieben. Auf S^2_q wirkt stattdessen eine nichtkokommutative Hopf-Algebra, die q-deformierte universelle Einhüllende $\mathcal{U}_q(su(2))$ der Lie-Algebra $su(2)$, in der zuvor besprochen Weise, an die noch einmal kurz erinnert werden soll:

Die Wirkung einer unitalen Hopf-Algebra H auf eine Algebra A, ist eine lineare Abbildung $H \otimes A \ni (h, a) \rightarrow h \triangleright a \in A$, so dass die Bedingungen

$$1 \triangleright a = a, \quad h \triangleright 1 = c(h), \quad h \triangleright (g \triangleright a) = (hg) \triangleright a$$

sowie

$$h \triangleright (ab) = (h_1 \triangleright a)(h_2 \triangleright b)$$

erfüllt sind. Dabei wurde wieder Sweedler’s Notation $\Delta(h) = h_1 \otimes h_2$ verwendet.
Definition 5.3.2. Die Hopf-Algebra \(U_q(su(2)) \) wird von den vier Generatoren \(e, f, k, k^{-1} \) mit den Relationen

\[
e_k = q e, \quad k f = q f k, \quad k^2 - k^{-2} = (q - \frac{1}{q})(f e - e f)
\]

erzeugt. Das Koprodukt ist auf diesen Erzeugern als

\[
\Delta(k) = k \otimes k \\
\Delta(e) = e \otimes k + k^{-1} \otimes e \\
\Delta(f) = f \otimes k + k^{-1} \otimes f
\]
gegeben.

Bemerkung 5.3.3. Im Fall \(q = 1 \) ist \(U_q(su(2)) \) als Hopf-Algebra isomorph zur universellen Einhüllenden der Lie-Algebra \(su(2) \). Die beiden Elemente \(e, f \) entsprechen dann einfach \(L_+, L_- \). Die Rekonstruktion des Erzeugers \(H \) der Cartan-Unteralgebra von \(su(2) \) ist aber recht subtil. Das Element \(k \) entspricht nämlich \(q^{2H} \), was auch die entsprechenden Vertauschungsrelationen erklärt. Den Grund für diese Wahl von \(k \) bei der Deformation erkennt man bei einem einzigen Blick auf das Koprodukt. Man kann \(H \) aber aus dem Element

\[
[H] = \frac{k - k^{-1}}{q - q^{-1}}
\]
im Limes \(q \to 1 \) zurückgewinnen.

Proposition 5.3.4. Die Hopf-Algebra \(U_q(su(2)) \) wirkt auf die Algebra \(S_q \) in der folgenden Weise:

\[
k a = qa, \quad e a = -\frac{1}{q^2}(1 + q^2)b \\
k \tilde{a} = \frac{1}{q}, \quad e \tilde{a} = 0 \\
k b = b, \quad e b = q\tilde{a} \\
k f = 0, \quad f \tilde{a} = \frac{1}{q^2}(1 + q^2)b
\]

Der Beweis dieser Aussage, der aus dem Nachprüfen aller oben angegeben Eigenschaften besteht, ist recht technisch.

Im nächsten Schritt sucht man nun nach einer Darstellung der Algebra \(S_q \) auf einem Hilbertraum \(\mathcal{H} \), welche kovariant bezüglich der Wirkung von \(U_q(su(2)) \) ist, so dass also

\[
l(\alpha |v) = (l_{(1)} \triangleright \alpha)(l_{(2)} |v)
\]

für alle \(l \in U_q(su(2)), \alpha \in S_q \) und \(|v) \in \mathcal{H} \) gilt.

Die Darstellungstheorie der kompakten Quantengruppe \(U_q(su(2)) \) ist dabei ein wohlbekannter Input der Rechnung:
Proposition 5.3.5. [Jimbo] Die irreduziblen Darstellungen der Hopf-Algebra $\mathcal{U}_q(Su(2))$ sind endlichdimensional, parametrisiert durch $l = 0, \frac{1}{2}, 1, \ldots$, und es existiert für jedes l eine durch $-l \leq m \leq l$ parametrisierte Basis, so dass

$$e[l, m] = \sqrt{|l - m||l + m + 1||l, m + 1\rangle}$$
$$f[l, m] = \sqrt{|l - m + 1||l + m||l, m - 1\rangle}$$
$$k[l, m] = q^{-m}|l, m\rangle$$

ist. $[x]$ bezeichnet dabei die q-Zahl

$$[x] := \frac{q^x - q^{-x}}{q - q^{-1}}.$$

Zu gegebenem l wird der entsprechende Darstellungsraum mit V^l bezeichnet.

Der Hilbertraum der gesuchten Darstellung von S_q kann dann wieder als direkte Summe der irreduziblen Darstellungen von $\mathcal{U}_q(su(2))$ zerlegt werden,

$$\mathcal{H} = \bigoplus_{l=0, 1, 2, \ldots} c_l V^l$$

dabei aber nicht klar ist, welche Darstellungen in dieser Zerlegung wie oft auftauchen. Diesem Umstand tragen die Multiplizitäten c_l Rechnung, die aber gleich als unnötige Vorsicht entlarvt werden. Genau wie bei der kommutativen Sphäre gibt es aber auch im Fall $q \neq 1$ unendlich viele solcher Darstellungen. Tatsächlich verläuft die gesamte Rechnung analog zum Fall $q = 1$, und insbesondere könnte man auch auf hier auf ein "nichtkokommutatives Wigner-Eckart-Theorem" zurückgreifen. Da dieses allerdings wenig bekannt zu sein scheint, werden die entsprechenden Rechenschritte zur Illustration explizit vorgesehen.

Lemma 5.3.6. Die bezüglich $\mathcal{U}_q(su(2))$ kovarianten \ast-Darstellungen von S_q^2 auf einem Hilbertraum \mathcal{H} sind von der Form:

$$a[l, m] = A^+_i m |l + 1, m - 1\rangle + A^0_{i, m} |l, m - 1\rangle + A^-_{i, m} |l - 1, m - 1\rangle$$
$$\tilde{a}[l, m] = B^+_i m |l + 1, m + 1\rangle + B^0_{i, m} |l, m + 1\rangle + B^-_{i, m} |l - 1, m + 1\rangle$$
$$b[l, m] = C^+_i m |l + 1, m\rangle + C^0_{i, m} |l, m + 1\rangle + C^-_{i, m} |l - 1, m\rangle$$

Beweis: Der Beweis basiert natürlich auf der Kovarianz-Eigenschaft (5.3). Zunächst einmal, folgt daraus durch Anwendung von k, dass a die Quantenzahl m um -1 ändert, \tilde{a} um 1, während b nichts an m ändert. Wendet man f dann auf die allgemeine Basiszerlegung von $a[l, m]$ an, so erhält man die Rekursionsrelationen

$$\frac{1}{q} \sqrt{|l - m + 1||l + m|} A^j_{l, m - 1} = \sqrt{|j - m + 2||j + m - 1\rangle} A^j_{l, m}.$$

Daraus folgt sofort, dass $A^j_{l, m - 1} = 0$ ist, außer es gilt $j \leq l + 1$. Analog schließt man, durch Anwendung von e auf \tilde{a}, die entsprechende Rekursionsrelation für $B^j_{l, m}$, sowie
5.3 But....

die Einschränkung $B_{l,m}^j = 0$, wenn nicht $j \leq l + 1$ ist. Weil die Wirkung von b auf die Basis durch die Anwendung von e auf a (beziehungsweise f auf \tilde{a}) gefunden werden kann, gilt dieselbe Schlussfolgerung dann auch für die Koeffizienten $C_{l,m-1}^j$.

Die letzten noch zu zeigenden Einschränkungen stammen von den Anforderungen einer $*$-Darstellung der Algebra S_q. Verlangt man nämlich, dass b selbst-adjungiert ist, so müssen die $C_{l,m-1}^j$ verschwinden, außer es ist $|j - l| \leq 1$. Durch die oben angezogene Beziehung zwischen den Koeffizienten A und B schließt man dann auf die Behauptung.

Mit der Kenntnis dieser Einschränkungen können dann auch die Rekursionsrelationen (5.15) (und analog für B,C) explizit für jeden Wert von m gelöst werden. Zur Abkürzung der Notation wird dabei \tilde{a} statt \tilde{a} geschrieben:

$$A_{l,m}^- = q^{-m}\sqrt{[l+m][l+m-1]} \alpha^-(l),$$
$$A_{l,m}^0 = q^{-m}\sqrt{[l+m][l+m+1]} \alpha^0(l),$$
$$A_{l,m}^+ = q^{-m}\sqrt{[l-m+1][l-m+2]} \alpha^+(l),$$
$$B_{l,m}^- = q^{-m}\sqrt{[l-m][l-m-1]} \beta^-(l),$$
$$B_{l,m}^0 = q^{-m}\sqrt{[l-m][l-m+1]} \beta^0(l),$$
$$B_{l,m}^+ = q^{-m}\sqrt{[l+m+1][l+m+2]} \beta^+(l),$$
$$C_{l,m}^- = q^{-m-l}\sqrt{[l-m][l+m]} \alpha^-(l),$$
$$C_{l,m}^0 = \frac{1}{1+q^2} ([l-m][l+m+1], -q^2[l-m+1][l+m]) \alpha^0(l),$$
$$C_{l,m}^+ = -q^{-m+1}\sqrt{[l+m+1][l-m+1]} \alpha^+(l).$$

Die nach wie vor unbekannte l-Abhängigkeit wurde dabei durch Parameter α, β beschrieben.

Die bisher noch unberücksichtigt gebliebenen Wirkungen von e, f auf die obige Form der Darstellung ausnutzend, erhält man dann auch einige Relationen zwischen diesen Parametern,

$$\alpha^-(l) = -\beta^-(l)q^{2l+2},$$
$$\alpha^0(l) = \beta^0(l)q^2,$$
$$\beta^+(l) = -\alpha^+(l)q^{2l}.$$

Darüber hinaus kann man auch noch die weiteren $*$-Eigenschaften, die allerdings (aus gutem Grund) noch gar nicht eingeführt wurden, der Algebra S_q^2 und ihrer Darstellungen ausnutzen:

Lemma 5.3.7. Die Algebra S_q ist eine $*$-Algebra mit:

$$a^* = q\tilde{a}, \quad b^* = b.$$

Ihre kovariante Darstellung auf dem Hilbertraum \mathcal{H} ist dann und nur dann eine $*$-
Darstellung, wenn

\[\alpha^0(l) = \beta^0(l) q^2 \] \hspace{1cm} (5.29)
\[\alpha^{-}(l) = -\alpha^+(l-1) q^{2l}, \] \hspace{1cm} (5.30)
\[\alpha^{-}(l) = q^2 \beta^+(l-1), \] \hspace{1cm} (5.31)
\[\alpha^+(l) = q^2 \beta^-(l+1), \] \hspace{1cm} (5.32)

gilt.

Der einfache, aber recht technische Beweis kann übergangen werden. Zu bemerken ist aber, dass die obigen Relationen für eine \(\ast \)-Struktur konsistent mit (5.25-5.27) sind.

Insgesamt verbleibt man nun also nur noch mit zwei Parametern \(\alpha^{-}(l) \) und \(\alpha^0(l) \), die aber noch durch die algebraischen Relationen der Algebra \(S_5^2 \) eingeschränkt sind. Im Geiste des Wigner-Eckart-Theorems ausgedrückt, sind nun alle Clebsch-Gordan-Koeffizienten bestimmt, und es fehlen nur noch die reduzierten Matrix-Elemente.

Zuvor sollte aber noch die, schon bei der Sphäre beobachtete, Entkopplung der halb- und ganzzahligen Darstellungen erwähnt werden. Weil langsam klar wird, dass die ganze Konstruktion ohnehin analog zum Fall \(q = 1 \) verläuft, werden von nun an auch die zu erwartenden höheren “Windungszahlen” ausgeschlossen indem in der Zerlegung von \(\mathcal{H} \) in irreduzible Darstellungen von \(U_q(\mathfrak{su}(2)) \) alle Multiplizitäten \(q \) = 1 gewählt werden. Die angesprochene Entkopplung drückt sich dann in folgendem Korollar aus:

Korollar 5.3.8. Der bezüglich \(U_q(\mathfrak{su}(2)) \) kovariante Darstellungsraum \(\mathcal{H} \) für die Quantensphäre, zerlegt sich in zwei invariante Unterräume \(\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{1/2} \), wobei

\[
\mathcal{H}_1 = \bigoplus_{l=0,1,2,...} V^l, \\
\mathcal{H}_{1/2} = \bigoplus_{l=1/2,3/2,...} V^l,
\]

ist.

Lemma 5.3.9. Die Relation

\[\bar{a}a - q^4 a\bar{a} = 1 - q^4 \]

führt auf die folgende Relation für \(\alpha^0(l) \):

\[\alpha^0(l+1)[2l+4] = \alpha^0(l)[2l]. \] \hspace{1cm} (5.33)

Diese Aussage folgt, wenn man den entsprechenden Ausdruck auf \(|l, m\rangle \) anwendet, und dann die \(|l+1, m\rangle \)-Komponente betrachtet.

Beachtet man noch, dass oben \(c_0 = 1 \neq 0 \) eingeschränkt wurde, so folgt weiter
Korollar 5.3.10. Die Darstellung von S^2_2 auf dem Hilbertraum \mathcal{H} hat die Eigenschaft, dass alle diagonalen Matrix-Elemente verschwinden, $A_{lm}^0 = B_{lm}^0 = C_{lm}^0 = 0$. Auf \mathcal{H} können die obigen Relationen explizit gelöst werden:

$$\alpha^0(l) = \frac{1}{[2l][2l + 2]} \alpha^0,$$ \hspace{1cm} (5.34)

wobei α^0 eine Konstante ist.

Betrachtet man als Nächstes die diagonalen Komponenten in der Wirkung von $\tilde{a}a - q^4a\tilde{a} = 1 - q^4$ auf $|l, m\rangle$, so erhält man die folgenden Identitäten:

$$q^{-2l} \left(\alpha^-(l)^2[4l - 2] - \frac{1}{q^2} \alpha^-(l + 1)^2[4l + 6] \right) + [2] \alpha^0(l)^2 = (q - q^{-1})(1 - q^4),$$ \hspace{1cm} (5.35)

$$(1 + q^2)q^{-2l - 1} \left(\frac{1}{q^2} \alpha^-(l + 1)^2[2l + 3] - \alpha^-(l)^2[2l - 1] \right) = q(q^{2l} + q^{-2l - 2}) \alpha^0(l)^2.$$ \hspace{1cm} (5.36)

Mit etwas Mühe kann man diese explizit lösen, mit dem Resultat

$$\alpha^0(l) = 0, \quad l \in \mathbb{Z}$$ \hspace{1cm} (5.37)

$$\alpha^-(l) = \pm q^{1 + l} \frac{1}{\sqrt{[2l + 1][2l - 1]}}, \quad l \in \mathbb{Z}$$ \hspace{1cm} (5.38)

für ganzzahlige l-Werte, beziehungsweise

$$\alpha^0(l) = \pm \frac{1 + q^2}{[2l][2l + 2]}, \quad l \in \mathbb{Z} + \frac{1}{2}$$ \hspace{1cm} (5.39)

$$\alpha^-(l) = \pm q^{1 + l} \frac{1}{2l}, \quad l \in \mathbb{Z} + \frac{1}{2}$$ \hspace{1cm} (5.40)

für halbzahlige Werte von l.

Verwendet man nun noch die Relationen für $\alpha^+(l)$ und die $\beta(l)$ so erhält man die expliziten Darstellungen von S^2_2 in beiden Fällen.

Es muss noch auf die Freiheiten bei der Wahl der Vorzeichen der $\alpha^-(l)$, die von l abhängen können, beziehungsweise die der $\alpha^0(l)$, welche von l unabhängig sind, hingewiesen werden. Genau wie im Fall $q = 1$ ist das Vorzeichen von $\alpha^0(l)$ sehr wichtig, während das Vorzeichen von $\alpha^-(l)$ durch eine einfache Umskalierung fixiert werden kann:

Proposition 5.3.11. Es existiert stets ein Basiswechsel der Form, $|l, m\rangle \rightarrow (-1)^g(l)|l, m\rangle$, so dass $\alpha^-(l)$ positiv ist.

Beweis: Angenommen in einer vorgegebenen Basis ist $\alpha^-(l)$ von der Form $(-1)^g(l)$.

Setzt man dann $g(l) = f(l) + g(l - 1)$ für $l > 1$ und $g(0) = 0$, wodurch die Funktion g eindeutig festgelegt wird, so ist in der neuen Basis $\alpha^-(l)$ positiv. □

Für ganzzahlige Werte von l ist die Darstellung deshalb eindeutig, während es im halbzahligen Fall zwei inäquivalente Darstellungen gibt. All das ist genau wie bei der kommutativen Sphäre. Hier wurde die Zahl der gesuchten Darstellungen allerdings (aus
praktischen Gründen) von vornherein durch die Wahl der c_i auf drei festgelegt. Die beiden inäquivalenten Darstellungen von $S_\mathcal{Q}$ auf $\mathcal{H}_\mathcal{Q}$, welche sich nur im Vorzeichen von $a^0(l)$ unterscheiden, seien in der Folge mit \mathcal{H}_+ beziehungsweise \mathcal{H}_- bezeichnet. Die Struktur von \mathcal{H}_+ und \mathcal{H}_- als Links-Modul über $S_\mathcal{Q}$ wird in den folgenden Abschnitten genauer untersucht. Dort werden auch die expliziten Matrix-Elemente der entsprechenden Darstellungen noch einmal zusammengesetzt.

5.3.1 Die Darstellung auf \mathcal{H}_1

Im Fall ganzzahliger Werte von \mathcal{Q} ist:

$$a[l,m] = q^{l-m} \sqrt{[l-m+1][l-m+2]} [l+1,m-1] (5.41)$$

$$- q^{l-m+1} \sqrt{[l+m][l+m+1]} [l-1,m-1], (5.42)$$

$$\tilde{a}[l,m] = - q^{l-m} \sqrt{[l+m+1][l+m+2]} [l+1,m+1] (5.43)$$

$$+ q^{l-m-1} \sqrt{[l-m][l-m+1]} [l-1,m+1], (5.44)$$

$$b[l,m] = - q^{l-m} \sqrt{[l+m+1][l-m+1]} [l+1,m] (5.45)$$

$$- q^{l-m} \sqrt{[l-m][l+m]} [l-1,m]. (5.46)$$

Diese Matrix-Elemente beschreiben einfach die Darstellung der Algebra auf sich selbst:

Proposition 5.3.12. Der Links-Modul \mathcal{H}_1 über $S_\mathcal{Q}$ ist frei, mit einem einzigen Generator $|0,0\rangle$.

Beweis: Zu zeigen ist, dass für jedes Element der Basis $|l,m\rangle$ ein eindeutiges Algebra-Element $P(a,\tilde{a},b) \in S_\mathcal{Q}$ existiert mit

$$|l,m\rangle = P(a,\tilde{a},b)|0,0\rangle.$$

Wenn nun für ein gegebenes l ein einziger Wert von m existiert, für den diese Aussage richtig ist, so gilt sie automatisch für alle $|m| \leq l$. Das folgt aus

$$e[l,m] = \sqrt{l-m}[l+m+1][l,m+1] = (e \triangleright P(a,\tilde{a},b)) |0,0\rangle, (5.47)$$

$$f[l,m] = \sqrt{l-m+1}[l+m][l,m-1] = (f \triangleright P(a,\tilde{a},b)) |0,0\rangle, (5.48)$$

wobei man die Darstellung von e, f, ihr Koprodukt und die Tatsache, dass e, f das “Vakuum” $|0,0\rangle$ annihiliert, sowie $k|0,0\rangle = |0,0\rangle$ verwendet.

Es bleibt die Aufgabe für jeden Wert von l einen Vektor zu finden, der sich in der gewünschten Form schreiben lässt. Klärerweise muss aber $|l,l\rangle$ proportional zu $\tilde{a}^*|0,0\rangle$ sein. Verwendet man (5.41-5.46) so erhält man in der Tat den exakten Ausdruck

$$\tilde{a}^*|0,0\rangle = (-1)^l \left(\begin{array}{c} [2][4] \cdots [2l] \\ [3][5] \cdots [2l+1] \end{array} \right)^{\frac{1}{2}} |l,l\rangle.$$
Daraus folgt auch sofort die Form der Polynome in der nunmehr bewiesenen Formel $|l, m\rangle = P_{lm}(a, \tilde{a}, b)|0, 0\rangle$. Es ist ja evident, dass dieses Polynom für $m > 0$ nur von \tilde{a} und b abhängen kann, im Fall $m = 0$ nur von b, und nur von a falls $m < 0$ ist.
Zu zeigen ist aber noch die Eindeutigkeit des jeweiligen Polynoms $P_{lm}(a, \tilde{a}, b)$. Falls diese aber für irgendeinen Wert l, m, (ohne Beschränkung der Allgemeinheit kann man $m > 0$ voraussetzen) nicht gegeben wäre, so existierte ein Polynom p mit der Eigenschaft

$$\tilde{a}^m p(b)|0, 0\rangle = 0,$$

und das ist klarerweise nicht möglich.}

5.3.2 Die Darstellungen auf \mathcal{H}_+ und \mathcal{H}_-.

Um dem Formelwald langsam ein Ende zu setzen, seien dem Leser die Matrix-Elemente der entsprechenden Darstellungen nunmehr erspart. Es dürfte mittlerweile ohnehin klar sein, wie sie aus den entsprechenden Formeln im Kapitel 3 hervorgehen, indem man runde durch eckige Klammern ersetzt und die nötigen q-Faktoren einfügt.

Man kann sich dann gleich auf die S^2_q-Modul-Struktur von $\mathcal{H}_+ \ (\mathcal{H}_- \text{ kann analog behandelt werden}) stürzen:

Proposition 5.3.13. \mathcal{H}_+ ist als S^2_q-Links-Modul von $|\frac{1}{2}, \frac{1}{2}\rangle$ und $|\frac{1}{2}, -\frac{1}{2}\rangle$ erzeugt.

Der Beweis verläuft analog zu dem für \mathcal{H}_1 vorgeführten, ist aber wesentlich aufwendiger, weshalb er hier übersprungen wird. Im Gegensatz zu \mathcal{H}_1 erhält man hier aber keine eindeutige Darstellung von Elementen aus \mathcal{H}_+:

Proposition 5.3.14. Die Generatoren $|\frac{1}{2}, \frac{1}{2}\rangle$ und $|\frac{1}{2}, -\frac{1}{2}\rangle$ genügen den folgenden Identitäten in \mathcal{H}_+:

$$\frac{1}{q^2} b |\frac{1}{2}, -\frac{1}{2}\rangle + q^2 a |\frac{1}{2}, \frac{1}{2}\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle \quad (5.49)$$

$$q^{-\frac{1}{2}} a |\frac{1}{2}, -\frac{1}{2}\rangle - b |\frac{1}{2}, \frac{1}{2}\rangle = |\frac{1}{2}, \frac{1}{2}\rangle \quad (5.50)$$

Das kann man durch Ausrechnen beider Seiten leicht nachprüfen. Es fällt auf, dass die beiden obigen Relationen zwar unabhängig über der Algebra S^2_q sind, man sie aber durch die Wirkung der Hopf-Algebra $\mathcal{U}_q(su(2))$ aufeinander abbilden kann. Wird man zum Beispiel mit e auf die obere, so erhält man die untere. Das legt den Verdacht nahe, dass hier wieder mal ein Projektor, welcher mit den Symmetrien verknüpft, am Werke sein könnte. Dem ist in der Tat so.

Man kann die obigen Relationen nämlich eleganter mit Hilfe des q-deformierten Bott-Projektors

$$P^\pm_q = \frac{1}{2} \left(\begin{array}{cc} \frac{1}{\sqrt{q}} b \pm 1 & \sqrt{q} a \\ \frac{1}{\sqrt{q}} \tilde{a} & \sqrt{q} a \pm 1 \end{array} \right), \quad (5.51)$$

der natürlich $(P^\pm_q) = (P^\pm_q)^2$ erfüllt, schreiben:
Die analoge Aussage gilt für \(\mathcal{H}_- \).

Korollar 5.3.15. In dem Modul \(\mathcal{H}_- \) gelten die folgenden Relationen zwischen den Generatoren:

\[
P_{q^-} \begin{bmatrix} \frac{1}{2}, -\frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \end{bmatrix} = 0.
\]
(5.52)

Es gilt nun eigentlich die Behauptung, dass diese beiden Moduln projektiv sind, zu beweisen:

Proposition 5.3.16. \(\mathcal{H}_+ \) und \(\mathcal{H}_- \) sind endlich erzeugte projektive Moduln über \(S_q^2 \), und es gilt \(\mathcal{H}_+ \oplus \mathcal{H}_- = (S_q)^2 \)

Auch hier wird auf den recht anspruchsvollen strengen Beweis verzichtet. Es soll aber wenigstens das Vorgehen skizziert werden.

Man kann sich auf den Projektor

\[
P_{q^+} \in M_2(\mathbb{C}) \otimes S_q
\]

beschränken. Die Behauptung für \(P_{q}^\pm \) folgt dann sofort aus der einfachen Beobachtung \(P_{q^+}^\pm - P_{q^-}^\pm = 1 \), mit der dann auch \(\mathcal{H}_+ \oplus \mathcal{H}_- = (S_q)^2 \) klar ist.

Zu zeigen ist dann, dass \(\mathcal{H}_+ \) als \(S_q^2 \)-Links-Modul isomorph zu \((S_q)^2 P_{q}^+ = (\mathbb{C}^2 \otimes S_q)P_{q}^+ \) ist, wobei mit der Schreibweise natürlich

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^t P_{q^+} = \begin{pmatrix} x_1 (P_{q^+}^{+})_{11} + x_2 (P_{q^+}^{+})_{21} \\ x_1 (P_{q^+}^{+})_{12} + x_2 (P_{q^+}^{+})_{22} \end{pmatrix}
\]

gemeint ist.

Klar ist, dass jedes Element aus \(\mathcal{H}_+ \) in der Form \(x_+ |\frac{1}{2}, -\frac{1}{2} \rangle + x_- |\frac{1}{2}, \frac{1}{2} \rangle \) geschrieben werden kann (allerdings nicht eindeutig).

Die Aufgabe besteht dann darin, zu zeigen, dass die Abbildung

\[
\phi : \mathcal{H}_+ \to (S_q)^2 P_{q^+}^+,
\]

die durch

\[
\phi \left(x_- |\frac{1}{2}, -\frac{1}{2} \rangle + x_+ |\frac{1}{2}, \frac{1}{2} \rangle \right) = \begin{pmatrix} x_- \\ x_+ \end{pmatrix} P_{q^+}^+
\]
(5.54)
eindeutig festgelegt ist, ein (wohldefinierter) Isomorphismus von \(S_q^2 \)-Links-Moduln ist.

Problematisch ist dabei nur der Beweis der Wohldefiniertheit: Wenn ein Element \(V = x_- |\frac{1}{2}, -\frac{1}{2} \rangle + x_+ |\frac{1}{2}, \frac{1}{2} \rangle \) in \(\mathcal{H}_+ \) verschwindet, so muss auch das Bild unter \(\phi \) verschwinden. (Das Bild von \(\phi \) hängt also insbesondere nicht von der Wahl der Repräsentanten \(x_+, x_- \), die ja nicht eindeutig sind, ab.)
Um diese zu beweisen analysiert man dann sehr genau die Struktur der Werte von x_+, x_-, wenn $V = 0$ ist. Wie sich zeigt, sind diese nämlich homogene Polynome in den Erzeugern a, \tilde{a}, b, mit einer ganz bestimmten Struktur, welche durch die Wirkung von $U_q(su(2))$ festgelegt ist. Auf der Kenntnis dieses Bauplans der Vektoren V basiert dann der Beweis der Wohldefiniertheit.

ϕ ist in offensichtlicher Weise ein Links-Modul-Homomorphismus, und man kann dann die Gleichung (5.54) verwenden um die Inverse von ϕ zu definieren. (Diese ist wegen (5.49-5.50) dann ebenfalls wohldefiniert.) Damit hätte man dann gezeigt, dass ϕ ein Isomorphismus von S^2_q-Links-Moduln ist.

5.3.3 Die Realitätsstruktur

Sei A eine auf einem Hilbertraum \mathcal{H} dargestellte C^*-Algebra, so dass ein zyklischer und separierender Vektor ξ existiert. Aus der bei der kommutativen Sphäre kurz angesprochenen Tomita-Takesaki-Theorie ist wohlbekannt, dass der dicht definierte antilineare Operator $a\xi \rightarrow a^*\xi$ zu einem geschlossenen antilinearen Operator auf dem gesamten Hilbertraum fortgesetzt werden kann. Der antiunitäre Anteil, J, in der Polarzerlegung dieses Operators, induziert dann einen Antisomorphismus von A in die positive Algebra A^o. Dieser Operator soll nun für die Quantensphäre ausgearbeitet werden.

Dabei wird stillschweigend vorausgesetzt, dass eine Graduierung γ, welche invariant unter der Symmetrie $U_q(su(2))$ ist, vorgegeben ist. Betrachtet werden daher in Analogie zum kommutativen Fall (man hat es hier ja mit einer stetigen Deformation zu tun) nur die Hilberträume $\mathcal{H}_+ \oplus \mathcal{H}_-$ beziehungsweise $\mathcal{H}_+ \oplus \mathcal{H}_-$.

Es kann vorweggenommen werden, dass dies der letzte Unterabschnitt dieses Abschnitts ist. Genau hier tritt nämlich das Problem zu Tage. Im letzten Fall $\mathcal{H}_+ \oplus \mathcal{H}_-$ existiert J nämlich nur für $q = 1$, während der erstere Fall aus den gleichen Gründen ausscheidet wie im Spezialfall der kommutativen Sphäre. Kurz gesagt, es gibt schon deshalb keine spektrale Tripel für S^2_q, $q \neq 1$, weil dann γ und J nicht in konstenter Weise existieren können. Das hat allerdings einen sehr tiefen Hintergrund, der später verraten wird. Um die Neugier des Lesers zu wecken, nur so viel: Es hat damit zu tun, dass die nichtkommutative Sphäre ein viel zu gutes “Benehmen” an den Tag legt. In diesem Sinn zeigt sich hier also eine Schwäche des Konzepts der spektralen Tripel, das so starr ist, dass er selbst die wünschenswerten Beispiele ausschließt. Über das Konzept “wünschenswert” kann man sich allerdings auch streiten.

$\mathcal{H}_1 \oplus \mathcal{H}_1$

In diesem Fall ist natürlich auf jedem der beiden Unterräume $\mathcal{H}_1 \{0,0\}$ ein zyklischer und separierender Vektor für S^2_q. In den Axiomen der H-symmetrischen spektralen Tripel wird aber auch verlangt, dass der modulare Operator J, zugleich die Antipode der Hopf-Algebra H induziert. Dies ist hier, und wahrscheinlich im Allgemeinen, automatisch erfüllt. Das wird im Folgenden herausgearbeitet.

Lemma 5.3.17. Die Wirkung von $U_q(su(2))$ ist mit der $*$-Struktur von S^2_q in dem folgenden Sinn kompatibel:

$$h \triangleright (x^*) = ((Sh)^* \triangleright x)^*, \quad \forall h \in U_q(su(2)), x \in S_q.$$ \hspace{1cm} (5.55)
Beweis: Die $*$-Struktur von $\mathcal{U}_q(su(2))$ ist als $k^* = k$ und $e^* = f$ gegeben. Wegen der Linearität und den weiteren Eigenschaften der Wirkung, Antipode und der Involution von $\mathcal{U}_q(su(2))$ genügt es die Aussage auf den Erzeugern nachzuprüfen. Es sei hier nur ein Beispiel vorgeführt, die übrigen Fälle prüft man analog nach.

\[e \triangleright (b^*) = e \triangleright b = \tilde{q} \tilde{a} = a^* = -\frac{1}{q}(q a)^* = -\frac{1}{q}(f \triangleright b)^* = -\frac{1}{q}(e^* \triangleright b)^* = \left((-\frac{1}{q}e^*) \triangleright b\right)^* = ((Se)^* \triangleright b)^*. \]

Bis jetzt wurde der Casimir-Operator von $\mathcal{U}_q(su(2))$ noch nicht verwendet, und deshalb auch noch nicht eingeführt. Dies soll nun nachgeholt werden:

Lemma 5.3.18. Der Operator

\[C = \frac{1}{q} k^2 + q k^{-2} + (q - \frac{1}{q})^2 e f \]

ist ein Element des Zentrums der Algebra $\mathcal{U}_q(su(2))$. Er ist hermitesch und hat die folgenden weiteren Eigenschaften:

\[SC = C, \]
\[C(l, m) = (q^{2l+1} + q^{-2l-1})|l, m\rangle, \]
\[C(x|0, 0\rangle) = (C \triangleright x)|0, 0\rangle, \quad \forall x \in S_q^2, \]

Damit kann man nun endlich auf den Punkt kommen:

Proposition 5.3.19. Für die Darstellung von S_q^2 auf \mathcal{H}_1 hat der antiunitäre Operator J des Tomita-Takesaki-Theorems die folgende Gestalt:

\[J|l, m\rangle = (-1)^{|l|} |l, -m\rangle, \quad (5.56) \]

Beweis: Sei $x \in S_q^2$, so dass $x|0, 0\rangle = |l, m\rangle$ ist, gegeben. Dann ist $x^*|0, 0\rangle$ offensichtlich ein Eigenvektor von k zum Eigenwert q^m – das folgt aus (5.55). Wirkt man nun mit C auf diesen Vektor, so ergibt sich:

\[Cx^*|0, 0\rangle = (C \triangleright x^*)|0, 0\rangle = (C \triangleright x^*)|0, 0\rangle. \]

Weil aber

\[C|l, m\rangle = (C \triangleright x)|0, 0\rangle = (q^{2l+1} + q^{-2l-1})|l, m\rangle \]

ist, muss $x^*|0, 0\rangle$ folglich ein Eigenvektor von C zu demselben Eigenwert wie $|l, m\rangle$ sein. Daraus schließt man, dass der antilineare Operator der Tomita-Takesaki-Theorie $|l, m\rangle$ auf einen Vektor abbildet, der proportional zu $|l, -m\rangle$ ist. Für den antiunitären Anteil, der hier interessiert, kann es daher nur zwei Möglichkeiten geben: $J|l, m\rangle$ kann nur $\pm |l, -m\rangle$ sein. Mit den Formeln (5.41-5.46) schließt man dann, analog zum kommutativen Fall auf (5.56).

Damit hat man dann auch die Darstellung der opposite Algebra $(S_q^2)^o$ auf $\mathcal{H}_1 \oplus \mathcal{H}_1$ gefunden und könnte im nächsten Schritt versuchen mit Hilfe der Ordnung-Eins-Bedingung den Dirac-Operator zu finden. Wenn dieser Operator, D, mit der Wirkung
5.3 But....

von $U_q(su(2))$ vertauschen soll, dann muss jeder Vektor $|l, m\rangle$ (die gemeinsamen Eigenvektoren von k und C) auch ein Eigenvektor von D sein (modulo Chiralität). Genau wie im kommutativen Fall findet man dann auch für beliebige Werte von q, dass ein solcher Operator nicht existieren kann.

Das war zu erwarten, nicht aber das folgende Ergebnis. In jedem Fall zeigen die bisher erzielten Zwischenresultate, dass nichtkommutative Hopf-Algebren ebenso nützlich bei der Konstruktion sein können, wie es kommutative sind. Insbesondere ist die Symmetrie-Anforderung an J so natürlich, dass sie hier sogar von selbst erfüllt ist.

$\mathcal{H}_+ \oplus \mathcal{H}_-$

Wenn der Operator der Graduierung γ mit der Wirkung von $U_q(su(2))$ und mit der Darstellung von S^2_q vertauschen soll, dann müssen die Räume \mathcal{H}_\pm jeweils Eigenräume zu einem der Eigenwerte ± 1, wobei die Wahl dann natürlich leicht fällt, sein. Die Realitätsstruktur J muss für zweidimensionale spektrale Tripel mit γ antikommutieren und wird deshalb \mathcal{H}_+ auf \mathcal{H}_- abbilden und umgekehrt.

Wenn man – wie im Fall von \mathcal{H}_1 – verlangt, dass J die Symmetrien respektiert (das Tomita-Takesaki-Theorem ist hier ja nicht anwendbar, weil es keinen zyklischen, separierenden Vektor auf \mathcal{H}_+, beziehungsweise \mathcal{H}_- gibt), so findet man für ein solches J, genau wie im kommutativen Fall

$$J|l, m, \pm\rangle = \pm (-1)^{|l-m|} |l, -m, \mp\rangle$$

mit einer offensichtlichen Notation. Das bedarf wohl keines Beweises. Definiert man nun für alle Elemente $x \in S^2_q$ wie üblich

$$x^a \overset{\text{def}}{=} Jx^a J,$$

es ist ja $J^2 = 1$, so gilt es natürlich nachzuprüfen, ob die somit definierte Darstellung der opposite Algebra mit der Darstellung der Algebra vertauscht. J ist ja nicht der modulare Operator der Tomita-Takesaki-Theorie, für den diese Eigenschaft automatisch erfüllt ist, der hier aber gar nicht existiert.

Proposition 5.3.20. *Es ist für $q \neq 1$ zum Beispiel*

$$[a, b^p]\neq 0.$$

Zum Beweis, der hier übersprungen wird, berechnet man die Anwendung von $[a, b^p]$ auf $|l, m, \pm\rangle$. Die $|l+, m - 1, \pm\rangle$-Komponente ist dann für $q \neq 1$ von Null verschieden. (Wer es nachprüfen will, kann einfach die Ausdrücke für die analoge Rechnung in Kapitel 3 verwenden, wenn er ganze Zahlen durch q-Zahlen ersetzt.)

Das war eigentlich schon.

Man könnte selbstverständlich vermuten, dass dieses Problem mit der geforderten Symmetrie-Eigenschaft der Realitätsstruktur zusammenhängt. Dem ist aber nicht so. Man kann nämlich – mit einigem Aufwand – beweisen, dass auf \mathcal{H}_\pm überhaupt keine
S_q^2-Bimodul-Struktur existiert, und somit existiert auch kein J, dass diese induzieren könnte. Der Beweis ist, wie angedeutet, recht aufwendig, kann aber, ebenso wie der Beweis der obigen Proposition, ausgelassen werden, weil es ein noch viel schlagkräftigeres Argument gibt, warum kein spektrales Tripel der Dimension 2 für S_q^2 existieren kann. Dieses wird weiter unten angeführt. Man sollte zuvor aber wenigstens andeuten, warum keine Rechts-Darstellung auf \mathcal{H}_+ existiert:

Weil dieser Modul nämlich endlich erzeugt und projektiv ist, lassen sich Elemente von A_+ stets in der Form ψP^+_q schreiben, wobei ψ in $S_q^2 \otimes \mathbb{C}^2$ liegt, und P^+_q der oben eingeführte q-deformierte Bott-Projektor ist. Multipliziert man solche Elemente dann (hypothetisch) mit Algebra-Elementen x von links, so wird das resultierende Element aus $S_q^2 \otimes \mathbb{C}^2$, weil der Projektor P^+_q nicht mit Algebra-Elementen vertauscht, im Allgemeinen nicht mehr in \mathcal{H}_+ liegen:

$$\psi P^+_q x \notin (S_q^2 \otimes \mathbb{C}^2) P^+_q.$$ (Das prüft man leicht nach. Es würde für die Wohlderfinition der Rechts-Multiplikation mit S_q^2 natürlich genügen, wenn es einen Automorphismus τ dieser Algebra geben würde, so dass $P^+_q x = \tau(x) P^+_q$ ist. Auch das ist hier nicht der Fall.)

Daraus folgt dann, dass es keine Rechts-Darstellung von S_q^2 auf \mathcal{H}_+ geben kann, die mit der Einbettung in $S_q^2 \otimes \mathbb{C}^2$ verträglich ist. Weil aber $\mathcal{H}_+ \oplus \mathcal{H}_- = S_q^2 \otimes \mathbb{C}^2$ (als S_q^2-Modul) gilt, kann man zeigen, dass die gesuchte Rechtsdarstellung, die von J vermittelt werden soll, diese Eigenschaft haben muss. Das ist die Idee des angesprochenen Beweises. Man könnte nun versuchen, ganz andere Moduln über S_q^2 zu verwenden, oder die Antikommutationsrelation von γ und J zu modifizieren um doch noch ein spektrales Tripel für die Quantensphäre konstruieren zu können. Es gibt aber noch einen weiteren, sehr viel tiefgehenderen Grund für das Scheitern unseres Versuchs.

Die Graduierung γ muss ja, gemäß den Axiomen, das Bild eines Hochschild-Zyklus sein. Masuda et al. [MNW] haben die Hochschild-Kohomologie von S_q^2 berechnet und festgestellt, dass diese für $q \neq 1$ zwar in der nullten Stufe mit der der kommutativen Sphäre übereinstimmt, in den nächsten beiden Stufen aber nicht mehr: Während es in $HH^2(C(S^2))$ genau ein nichttriviales Element gibt, nämlich die Volumenform, ist $HH^2(S_q^2)$ für $q \neq 1$ trivial. Dafür existiert dann ein nichttriviales Element in $HH^1(S_q^2)$, während die analoge Stufe für die kommutative Sphäre trivial ist. Die Volumenform “springt” bei der Deformation also von der zweiten in die erste Stufe. In diesem Sinn ist die Quantensphäre also eindimensional. Masuda et al. weisen auch darauf hin, dass man dieses Phänomen durchaus intuitiv verstehen kann:

Im Fall der kommutativen Sphäre entspricht das Element $b \in C(S^2)$ der Funktion $\cos \theta$. Das Spektrum dieses Operators ist also das Intervall $[1, -1]$. Weil b mit dem Drehimpuls-Generator L_0 vertauscht, sind diese Eigenwerte allerdings entartet, und zwar jeweils entlang eines Kreises. Nur die beiden extremalen Eigenwerte $+1, -1$ sind eindeutig. Auf diese Weise entsteht das Bild der Sphäre, wie es nach dem Gelfand-Naimark-Theorem ja auch sein muss. (Auf den Beweis dieser Aussage, der nicht schwierig ist, wird verzichtet.)

Wenn man hingegen das Spektrum des Operators $b \in S_q^2$ für $q \neq 1$ berechnet, so wie es Masuda et al. (und auch ich...) getan haben, so erhält man, dass alle Eigenwerte von...
der Form $\pm q^k$ für eine natürliche Zahl k sein müssen, sie sind aber wieder entlang von Kreisen entartet. Wie man an den definierenden Relationen der Quantensphäre sofort erkennt, ist nämlich immer noch eine $U(1)$-Wirkung auf dieser Algebra wohldefiniert, mit $b \mapsto b$ und $a \mapsto \lambda a$. Statt einer Zwei-Sphäre entsteht also nunmehr das Bild von disjunkten Kreisen (welche sich am Äquator häufen), also einer eindimensionalen Menge.

Bibikov und Kulish [BK] haben einen Dirac-Operator für die Quantensphäre vorgeschlagen, der im Wesentlichen auf der $\mathcal{U}_q(su(2))$-Symmetrie beruht. Dieser Operator erfüllt natürlich nicht die Conneschen Axiome, aber in Anbetracht unseres Resultats erscheint das auch angebracht.

Ihre Idee liegt der Beobachtung zugrunde, dass der Dirac-Operator auf dem Spinbündel $C(S^2) \otimes \mathbb{C}^2$ der kommutativen Sphäre als

$$D = \sum_i L_i \otimes \sigma_i$$

geschrieben werden kann, wobei σ_i die üblichen Pauli-Matizen bezeichnet, welche in die $su(2)$-Wirkung auf das Spinbündel über $J_i = L_i \otimes 1_2 + id \otimes \sigma_i$ eingehen. Dieser Operator ist dann der einzige Differential-Operator erster Ordnung, der invariant unter $su(2)$ ist. Für die Quantensphäre existiert ein analoger, eindeutiger Operator auf $S^2_q \otimes \mathbb{C}^2$, der aus den Operatoren k, e, f, welche auf S^2_q wirken, sowie deren zweidimensionaler Darstellung,

$$\pi_2(k) = \begin{pmatrix} \frac{1}{q} & 0 \\ 0 & q \end{pmatrix}, \quad \pi_2(e) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \pi_2(f) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

zusammengesetzt wird. Wegen des veränderten Koprodukts und der q-deformierten Clebsch-Gordan-Koeffizienten sieht dieser Operator explizit aber etwas komplizierter als im kommutativen Fall aus, seine Form ist hier aber auch nicht von Interesse. Zu bemerken ist nur, das Bibikov und Kulish das Spektrum dieses Operators berechnen können. Es ergibt sich zu:

$$\lambda_q = \pm [l + \frac{1}{2}],$$

was kaum noch jemanden überraschen dürfte. Die Eigenwerte sind dann auch jeweils $(2l + 1)$-fach entartet.

Merkwürdigerweise hat bisher noch niemand auf die veränderte Asymptotik dieses Dirac-Operators hingewiesen:

Lemma 5.3.21. Wenn man $q < 1$ voraussetzt, so ist die Reihe

$$\sum_{k} \frac{1}{[k]}$$

konvergent, ebenso wie die Reihe

$$\sum_{k} \frac{2k + 1}{[k]}.$$
Beweis:
Der Beweis ist ziemlich einfach, es ist ja
\[
\frac{1}{[k]} = \frac{q - q^{-1}}{q^k - q^{-k}}
\]
und das verhält sich für große Werte von \(k \) und \(q < 1 \) wie \(q^{k-1} \), so dass die entsprechende Reihe konvergiert. Die Reihe in der unteren Gleichung des Lemmas entsteht aus der ersten durch Ersetzen von \(q \) durch \(q^\alpha \), differenzieren nach \(\alpha \) und auswerten bei \(\alpha = 1 \). Sie ist deshalb ebenfalls konvergent.

Vom Standpunkt einer Quantenfeldtheorie auf der Quantensphäre ist dieses verbesserte Ultraviolett-Verhalten natürlich wünschenswert. \(Tr(\frac{1}{D}) \) ist der Beitrag des Ein-Schleifen-Niveaus, das dann nicht mehr renormiert werden muss. Dabei spielt auch das fehlende \(\gamma \) eine Rolle. In der Arbeit [G-BVq] wurde nämlich gezeigt, dass das Ultraviolett-Verhalten von Theorien, welche mit Hilfe eines spektralen Tripels konstruiert werden, nur von der Dimension des spektralen Tripels abhängt. Dies ist eine Konsequenz der Existenz des Hochschild-Zyklus \(\gamma \). Da für den Dirac-Operator von Kulish und Bibikov \(\frac{1}{D^0} \) nicht im Dixmier-Ideal liegt, sondern sogar in der Spurklasse ist, entspricht er im Conneschen Sinn eher einer Dimension, die kleiner als 1 ist. (Aber nicht der Dimension 0, denn \(D^0 \) ist ja nicht in der Spur-Klasse.) Das Resultat deckt sich also nicht ganz genau mit dem von Masuda et al.

5.4 Erweiterungen des nichtkommutativen Torus

Die folgende Konstruktion führt auf eine große Klasse von Ein-Parameter-Familien von Nichtkommutativen Algebren und zugehörigen spektralen Tripeln, die durch Elemente der Gruppe \(U(1) \) parametrisiert sind. Sie verallgemeinern den Nichtkommutativen Torus, geht aber leider nicht deutlich darüber hinaus.

Sei \(A \) eine \(C^* \)-Algebra, auf der eine Wirkung der Gruppe \(U(1) \) via \(* \)-Automorphismen, die mit
\[
\tau_u(a) \quad \text{mit} \quad u \in U(1), \quad a \in A,
\]
bezeichnet wird, existiert. Als Darstellung von \(U(1) \) kann \(A \) dann in irreduzible Darstellungen zerlegt werden,
\[
A = \bigoplus_{k \in \mathbb{Z}} A_k,
\]
wo bei
\[
\tau_{e^{i\alpha}}(a_k) = e^{ik\alpha}a_k
\]
5.4 Erweiterungen des nichtkommutativen Torus

für \(a_k \in A_k \) ist. Klärerweise ist \(A_k \cdot A_l \subseteq A_{k+l} \) und folglich ist \(A \) eine \(\mathbb{Z} \)-graduierte Algebra. (Umgekehrt besitzt jede \(\mathbb{Z} \)-graduierte \(C^* \)-Algebra eine solche \(U(1) \)-Wirkung.) Der Einfachheit halber sei in der Folge vorausgesetzt, dass es endlich viele Generatoren \(\{ e_m \} \) von \(A \) gibt, die jeweils zu einer der irreduziblen \(U(1) \)-Darstellungen gehören:

\[
e_m \in A_{k_m} \quad \Rightarrow \quad \tau_{e^{im\alpha}}(e_m) = e^{ik_m\alpha} e_m.
\]

Außerdem sei vorausgesetzt, dass ein \(U(1) \)-symmetrisches gerade spektrales Tripel \((A, \mathcal{H}_A, D, \gamma, J_A)\) der Dimension \(d = 2m \) gegeben ist, also

- Es existiert eine unitäre Darstellung \(r \) von \(U(1) \) auf \(\mathcal{H}_A \).
- Die Darstellung \(\pi \) von \(A \) auf \(\mathcal{H}_A \) ist kovariant bezüglich \(r \),
 \[
r(u) \pi(a) r(u)^* = \pi \left(\tau_u(a) \right) \quad \forall u \in U(1), \ a \in A.
\]
- Der Dirac-Operator \(D \) sowie die Graduierung \(\gamma \) kommunizieren mit \(r \).
- Die Realitätsstruktur \(J_A \) ist kovariant in dem Sinne
 \[
 J r(u) J^* = r(u)^*
 \]
 In der Konsequenz ist die Rechts-Darstellung \(\pi^\circ(a) = J \pi(a^*) J^* \) von \(A \) ebenfalls kovariant,
 \[
r(u) \pi^\circ(a) r(u)^* = \pi^\circ \left(\tau_u(a) \right) \quad \forall u \in U(1), \ a \in A.
\]

Wie zuvor kann \(\mathcal{H}_A \) dann in irreduzible Darstellungen zerlegt werden.

\[
\mathcal{H}_A = \bigoplus_{k \in \mathbb{Z}} \mathcal{H}_A^{(k)}
\]
und die Kovarianz der Darstellung ist äquivalent zu

\[
e_m \mathcal{H}_A^{(l)} \subseteq \mathcal{H}_A^{(l+k_m)}.
\]

Analog schließt man

\[
J_A \mathcal{H}_A^{(l)} \subseteq \mathcal{H}_A^{(-l)}
\]
und folglich ist ja antiunitär – müssen die Unterräume \(\mathcal{H}_A^{(l)} \) und \(\mathcal{H}_A^{(-l)} \) isomorph sein. Wegen Schur’s Lemma existieren außerdem Konstanten \(d_l \) mit

\[
D_A \psi^{(l)} = d_l \psi^{(l)} \quad \forall \psi^{(l)} \in \mathcal{H}_A^{(l)}.
\]
So weit wie gehabt.

Die Algebra \(C(U(1)) \) hat einen unitären Erzeuger \(U \), \(UU^* = U^* U = 1 \) Das kanonische spektrale Tripel sei in der Folge mit \((U, L^2(S^1), \delta) \), bezeichnet, wobei der Dirac-Operator \(\delta = -i \frac{d}{dx} \) für \(U = e^\varphi \) ist. (Die Realitätsstruktur ist einfach als komplexe Konjugation \(C \) gegeben, die Graduierung ist trivial, also \(\gamma = 1 \). Aus diesem
Grund erübrigt es sich eine eigene Notation für die beiden einzuführen.) Natürlich ist auch dieses spektrale Tripel \(U(1)\)-symmetrisch.

Mit diesen Zutaten kann man nun ein neues spektrales Tripel der Dimension \(d + 1\) konstruieren. Dazu fixiert man ein beliebiges Element \(u\) aus \(U(1)\), der korrespondierende Phasenfaktor sei mit \(\lambda = e^{i 2 \pi \theta}\) bezeichnet. Und schon kann es losgehen:

Als Hilbertraum wählt man
\[
\mathcal{H} = \mathcal{H}_A \otimes L^2(S^1),
\]
der mit kanonischen Darstellung \(\pi \otimes 1\) von \(A\) versehen wird. Als nächstes fügt man den unitären Operator

\[
\tilde{U} = r(u) \otimes U,
\]
hinzu, der dann gemeinsam mit den Generatoren von \(A\) – und einer entsprechenden Vervollständigung – eine neue \(C^*\)-Algebra erzeugt, die mit \((S^1)_uA\) bezeichnet wird. Das Anhängsel \(u\) soll dabei die Abhängigkeit der Algebra von dem fest vorgegebenen \(u \in U(1)\) signalisieren. Für jedes Element \(a \in A\) ist dann

\[
\tilde{U} a = \tau_u(a) \tilde{U}.
\]
Wenn \(\tau_u\) also nichttrivial ist, so ist die Algebra \((S^1)_uA\) nichtkommutativ, selbst wenn \(A\) kommutativ war.

Genau wie im Fall \(u = 1\), wenn \((S^1)_1A = A \otimes C(S^1)\) ist, kann man den Dirac-Operator als

\[
D = D_A \otimes 1 + \gamma \otimes \delta,
\]
wählen. Dazu ist es natürlich wichtig, dass das ursprüngliche spektrale Tripel für \(A\) gerade ist. Die neue Graduierung ist

\[
\Gamma = \gamma \otimes 1.
\]
Die einzige nichttriviale Aufgabe besteht im Auffinden der rechten Rechts-Darstellung \(\pi^\circ\) der Algebra \((S^1)_uA\) auf \(\mathcal{H}\), und natürlich der Definition des zugehörigen Operators \(J\). Hier sei nur das Resultat angegeben:
Für die Erzeuger \(e_m\) kann man die Rechts-Darstellung als

\[
\pi^\circ(e_m \otimes 1) = e_m^\circ \otimes (u^*)^{km},
\]
wählen, während sie für \(\tilde{U} = r(u) \otimes U\) dann als

\[
\pi^\circ(r(u) \otimes U) = 1 \otimes U
\]
gegeben ist. Es ist recht einfach (wenn auch mühsam) zu beweisen, dass diese Rechts-Darstellung mit der definierenden Links-Darstellung kommutiert, etwa

\[
\left[r(u) \otimes U, e^\circ \otimes (u^*)^{km} \right] \cdot \left(1 \otimes u^{km} \right) \cdot (r^*(u) \otimes 1) = r(u) e^\circ_m r^*(u) \otimes U - e^\circ_m \otimes (u^*)^{km} U u^{km} = (\lambda^m e^\circ_m) \otimes U - e^\circ_m \otimes (\lambda^m U) = 0.
\]
Man zeigt auch leicht, dass für alle Elemente $A, B \in (S^1)_u \mathcal{A}$
\[\pi^o(A) \pi^o(B) = \pi^o(BA) \]
ist. Der Realitäts-Operator J, der diese Rechts-Darstellung gemäß $\pi^o(A) = JA^*J^*$ induziert, ist für $\psi^{(k)} \otimes \phi^{(l)} \in \mathcal{H}_A^{(k)} \otimes (L^2(S^1))^{(l)}$ durch
\[J(\psi^{(k)} \otimes \phi^{(l)}) = \lambda^{kl} (J_A \psi^{(k)} \otimes C\phi^{(l)}) \]
gegeben. (C bezeichnet dabei die komplexe Konjugation.)

Lemma 5.4.1. Die oben definierten Daten $((S^1)_u \mathcal{A}, \mathcal{H}, D, \Gamma, J)$ bilden ein spektrales Tripel der Dimension $d + 1$, falls das Axiom der Poincaré-Dualität erfüllt ist.

Der Beweis ist recht einfach und kann deshalb zum größten Teil übersprungen werden. Drei Punkte sind allerdings erwähnungswert:

- Die Ordnung-Eins-Bedingung
\[[[D, A], B^0] = 0 \]
ist erfüllt, weil D_A und δ mit der Darstellung von $U(1)$ kommutieren.

- Das Spektrum des Dirac-Operators ist als $\pm \sqrt{d_1^2 + k^2}$, mit $l, k \in \mathbb{Z}$ gegeben.

- Die Konstruktion von γ als Hochschild-Zykel ist recht unangenehm im allgemeinen Fall (nicht allerdings in Beispielen). Für $\lambda = 1$ ist sie aber offensichtlich: Man verwendet einfach den Ausdruck für γ_A, etwa
\[\gamma_A \otimes 1 = \left(\sum_n a_0^n [D_A, a^n_1] \cdots [D_A, a^n_d] \right) \otimes 1, \]
multipliziert ihn mit $1 \otimes U^* \delta, U$ und antisymmetrisiert den resultierenden Ausdruck anschließend in allen auftretenden Elementen von $(S^1)_u \mathcal{A}$.

Im allgemeinen Fall $\lambda \neq 1$ geht man im Wesentlichen genauso vor. Die einzige Komplikation besteht dabei darin, dass man beim Antisymmetrisieren den modifizierten Vertauschungsrelationen einen kleinen Tribut zollen muss, indem man entsprechende Phasenfaktoren einführt.

Poincaré-Dualität, wenn man sie denn Ernst nehmen will, muss im konkreten Beispiel nachgeprüft werden. Ich habe bisher keinen Weg gefunden sie im allgemeinen Fall zu beweisen.

Die ganze Konstruktion ist natürlich von der Konstruktion des spektralen Tripels für den nichtkommutativen Torus T^2_{δ} abgeleitet. Um dieses spektrale Tripel mit der obigen Konstruktion zu finden müsste man mit der Algebra $\mathcal{A} = C(S^1)$ starten, für die es aber kein gerade spektrales Tripel gibt. In diesem speziellen Fall kann man aber dennoch ein spektrales Tripel konstruieren, indem man den Hilbertraum $\mathcal{H} = C(S^1) \otimes C(S^1)$ verdoppelt. Für allgemeine Algebren wird ein solcher Trick natürlich nicht funktionieren.
Beginnt man mit \(A = T^2_{\theta} (U_1 U_2 = e^{i2\pi\theta} U_2 U_1) \), mit der \(U(1) \)-Wirkung

\[
U_1 \mapsto e^{2\pi i} U_1, \quad U_2 \mapsto U_2,
\]
so erhielte man einen Spezialfall (\(\theta_{23} = 0 \)) des dreidimensionalen nichtkommutativen Torus. Man kann die Methode aber so modifizieren, dass man auch den allgemeinsten nichtkommutativen Torus \(T^2_{\theta} \) erhält.

Zur Konstruktion eines neuen Beispiels kann man die Algebra \(A = C(S^2) \) als Ausgangspunkt verwenden. Sie hat drei (kommutierende) Erzeuger \(b = b^* \) und \(a, a^* \), die der Relation

\[
aa^* + b^2 = 1
\]
genügen. Die Wirkung von \(u = e^{i\alpha} \in U(1) \) auf diese Erzeuger ist als

\[
\tau_u(b) = b, \quad \tau_u(a) = e^{i\alpha} a
\]
gegeben.

Die Algebra \(S^1 C(S^2) \) (mit \(\lambda = e^{i2\pi \theta} \in U(1) \)) ist also von den Elementen \(a, a^*, b, U, U^* \) erzeugt, mit den Relationen

\[
\begin{align*}
aa^* + b^2 &= 1 \\
UU^* &= U^* U = 1 \\
Ub &= bU \\
ua &= \lambda a U.
\end{align*}
\]

Die weiteren Details sollen dem Leser erspart bleiben, zumal schon die Ausarbeitung der Sphäre \(S^2 \) recht aufwendig ist.

Mit dieser Methode lassen sich dann auf Anhieb unzählige weitere Beispiele konstruieren, die sich aber alle nur recht unwesentlich vom Nichtkommutativen Torus unterscheiden. Ebenso wie bei diesem beruht die Konstruktion auf der abelschen Gruppe \(U(1) \). Eine interessante Frage wäre, ob man eine ähnliche Konstruktion auch für nichtabelsche Gruppen durchführen kann. Für endliche Gruppen, die auf endlichdimensionale Algebren wirken, zum Beispiel die Permutationsgruppe \(S_n \), die auf die kommutativen \(n \)-dimensionalen Tori \(T^n \) durch Vertauschen der Kreise wirkt, konnten wir diese Frage bereits positiv beantworten [PS-tor].
5.4 Erweiterungen des nichtkommutativen Torus
Teil III

Diskrete spektrale Tripel
Matrix-Algebren sind ohne Frage die einfachsten C^*-Algebren. Im kommutativen Fall ist eine solche Algebra der Dimension n isomorph zur Algebra \mathbb{C}^n der diagonalen $n \times n$-Matrizen. Führt man die Basis

$$P_i := \text{diag}(0, \ldots, 0, 1, 0 \ldots, 0)$$

$i = 1, 2 \ldots n$

ein, so läßt sich jedes Element dieser Algebra als $a = a^\dagger P_i$ zerlegen. Multiplikation und Involution sind als

$$P_i P_j = \delta_{ij} P_i, \quad P_i^* = P_i$$
gegeben.

Für Charaktere, beziehungsweise reine Zustände, χ auf der Algebra, folgt dann aus $\chi(P_i) \cdot \chi(P_j) = \delta_{ij} \chi(P_i)$ sofort, dass $\chi(P_i)$ nur entweder 0 oder 1 sein kann, und es außerdem nur ein i mit $\chi(P_i) \neq 0$ geben kann. Insgesamt gibt es also n Charaktere χ_i, die durch

$$\chi_i(P_j) = \delta_{ij}$$

festgelegt sind.

In Anbetracht des Satzes von Gelfand und Naimark überrascht dies natürlich auch nicht. Die Algebra identifiziert sich dann als Algebra der Funktionen auf einem diskreten Raum mit n Punkten, den Charakteren, wobei $\chi^i(P_j)$ der Funktionswert im Punkt i ist.

Allgemein sind endlichdimensionale C^*-Algebren, die immer halbeinfach sind, isomorph zu einer Summe

$$\bigoplus_{i=1}^{k} M_{n_i}(\mathbb{K}_i)$$

von Matrix-Algebren $M_{n_i}(\mathbb{K}_i)$ über einem Körper \mathbb{K}_i. Für komplexe Algebren müssen alle $\mathbb{K}_i = \mathbb{C}$ sein. Für reelle Algebren, also Algebren die über dem Körper \mathbb{R} definiert sind, können neben den Matrizen mit komplexen Einträgen, auch solche mit reellen, $M_{n_i}(\mathbb{R})$, oder auch quaternionischen Einträgen, $M_{n_i}(\mathbb{H})$, auftreten.

Analog zum kommutativen Fall ist es auch hier nützlich mit den Algebra-Elementen $P_i^2 = P_i$ zu arbeiten, wobei P_i nunmehr die Einheitsmatrix $\mathbf{1} \in M_{n_i}$ bezeichnet. Es gelten dann die gleichen algebraischen Relationen zwischen den P_i wie im kommutativen Fall, und weiterhin läßt sich jedes Algebra-Element a als $a = a^\dagger P_i$ zerlegen; allerdings sind die a_i jetzt Matrizen aus der entsprechenden Unteralgebra.

Im Gegensatz zu einer kommutativen, endlichdimensionalen Algebra hat eine nicht-kommutative Algebra unendlich-viele reine Zustände. In einer gegebenen Darstellung sind die reinen Zustände durch $|\psi\rangle \langle \psi|$, mit beliebigem $|\psi\rangle$, $\langle \psi|\psi\rangle = 1$ gegeben. Die komplexen $n \times n$-Matrizen haben zum Beispiel nur eine einzige nichttriviale Darstellung, jene auf dem \mathbb{C}^n. Die Einheitsvektoren bilden dann eine $(2n - 1)$-Sphäre. Da die Vektoren $|\psi\rangle$ und $e^{i\alpha}|\psi\rangle$, $\alpha \in \mathbb{R}$ aber den gleichen reinen Zustand beschreiben, müssen diese Vektoren zur Konstruktion des Raums der reinen Zustände der komplexen
$n \times n$-Matrizen identifiziert werden. Als topologischer Raum ist dieser also \mathbb{CP}^n. Es ist daher in diesem Fall wenig sinnvoll die Algebra als eine Deformation der Algebra der Funktionen auf dem Raum ihrer reinen Zustände aufzufassen. Die Algebren \mathbb{C} und $M_n(\mathbb{C})$ sind ja auch (für beliebiges n) Morita-äquivalent, denn es ist

$$V_n \otimes \mathbb{C} V_n^* \cong M_n(\mathbb{C}) \quad \text{und} \quad V_n^* \otimes M_n(\mathbb{C}) V_n \cong \mathbb{C},$$

wobei $V_n = \mathbb{C}^n$ der kanonische $M_n(\mathbb{C})$-Links-Modul und natürlich \mathbb{C}-Rechts-Modul ist; der Dualraum V_n^* ist ein $M_n(\mathbb{C})$-Rechts-Modul. Morita-Äquivalenz ist als Existenz eines solchen Moduls mit der obigen Eigenschaft definiert.

Aus der topologischen Perspektive der K-Theorie und der zyklischen Kohomologie beschreiben sie also denselben Raum: einen Punkt. (Es gibt aber trotzdem einige, wenige, hier nicht interessante, topologische Aspekte, in denen sich diese Räume unterscheiden, [C]).

Tatsächlich sind alle reinen Zustände von $A = M_n(\mathbb{C})$ in dem folgenden Sinn unitär äquivalent:

Zu je zwei reinen Zuständen χ_1, χ_2 existiert ein unitäres $u \in A$, so dass für alle $a \in A$

$$\chi_1(a) = \chi_2(ua \ast)$$

ist. Eine Anwendung auf Eichtheorien drängt sich aus diesem Grund geradezu auf. Als Eichgruppe verwendet man dabei die unitäre Gruppe der Algebra, die auch als Gruppe der inneren Automorphismen $\{u \in A \mid uu^* = u^*u = 1\}$,

$$a \mapsto uau^*$$

aufgefasst werden kann. Zur Beschreibung der “vollständigen” Raumzeit tensoriert man die endlichdimensionale Algebra mit der Algebra der Funktionen auf einer Riemannschen, vierdimensionalen, Spin-Mannigfaltigkeit $C(M)$. Die spektralen Tripel für ein solches Tensorprodukt lassen sich in diesem Fall als Produkt von spektralen Tripeln für die beiden Faktoren der Algebra konstruieren. Explizit ist dann, mit dem vierdimensionalen spektralen Tripel

$$(\mathcal{H} = L^2(M, S), C(M), D_0, \gamma_5, C),$$

sowie dem endlichen spektralen Tripel

$$(\mathcal{H}_f, A_f, M, \Gamma, J_f)$$

(und einer hoffentlich nicht allzu verwirrenden Notation) das resultierende spektrale Tripel durch die folgenden Daten gegeben:

$$A = C(M) \otimes A_f$$
$$\mathcal{H} = L^2(M, S) \otimes \mathcal{H}_f$$
$$D = D_0 \otimes 1_f + \gamma_5 \otimes M$$
$$\gamma = \gamma_5 \otimes \Gamma$$
$$J = C \otimes J_f.$$

Es stellt sich daher natürlicherweise die Frage, welche Erweiterungen des Standardmodells im Rahmen solcher nichtkommutativen Modelle möglich sind, beziehungsweise inwiefern das Standardmodell in dieser neuen Perspektive gegenüber anderen Modellen ausgezeichnet ist. Es bietet sich an, als erstem Schritt eine möglichst allgemeine Beschreibung aller Teilchenmodelle dieses Typs durchzuführen. Geometrisch gesprochen, verlangt dies eine Klassifikation aller endlichen, (nichtkommutativen) spektalen Tripel. Eine solche ist auch ohne besondere Mühe durchführbar [PS],[Kr],[Kr-Diss]. Das Ergebnis lässt sich wie folgt zusammenfassen:

Zum einen sind nicht alle (kompakten) Lie-Gruppen als Gruppe der unitären Elemente einer Matrix-Algebra einbettet. Die unitären Gruppen der reellen Matrix-Algebren $M_n(\mathbb{C})$, $M_n(\mathbb{R})$, und $M_n(\mathbb{H})$ sind $U(n)$, $O(n)$ beziehungsweise $Sp(2n)$. Des Weiteren können die Fermionen nicht unter beliebigen irreduziblen Darstellungen dieser Gruppen transformieren. Die entsprechenden Algebren haben – mit einer Ausnahme – nämlich jeweils nur eine irreduzible Darstellung auf einem komplexen Vektorraum. $M_n(\mathbb{R})$ kann nur auf \mathbb{C}^n dargestellt werden, $M_n(\mathbb{H})$ auf \mathbb{C}^{2n}. Etwas komplizierter ist es nur für $M_n(\mathbb{C})$: Als komplexe Algebra hat sie, bis auf unitäre Äquivalenz, nur eine Darstellung auf \mathbb{C}^n, für die reelle Algebra $M_n(\mathbb{C})$ gibt es aber zwei inequivalente Darstellungen auf \mathbb{C}^n. Man kann ein Element $m \in M_n(\mathbb{C})$ entweder als m oder als sein komplex konjugiertes \overline{m} darstellen. Für das physikalisch relevante Beispiel $M_3(\mathbb{C})$ induzieren diese beiden Darstellungen gerade die 3 beziehungsweise die 3 Darstellung der Eichgruppe $SU(3)$. Alles in allem, sind also nur solche Theorien denkbar, bei denen die Fermionen unter der fundamentalen, ihrer konjugierten, oder der trivialen Darstellung der nichtabelschen Eichgruppen transformieren. Eventuell auftretende $U(1)$-Faktoren bedürfen einer etwas genauer Analyse.

Kapitel 6

Die Klassifikation endlicher Geometrien

6.1 Spektrale Tripel für komplexe Algebren

Eine beliebige endlichdimensionale C^*-Algebra über \mathbb{C} ist von der Form

$$\mathcal{A} = \bigoplus_{i=1}^{k} M_{n_i}(\mathbb{C}).$$

Wie oben, seien P_i die Projektoren auf die i-te Matrix-Algebra $M_{n_i}(\mathbb{C})$, und

$$a_i := a P_i, \quad a \in \mathcal{A}.$$

Ein gerades, reelles spektrales Tripel der Dimension 0 zu dieser Algebra ist dann gegeben durch eine Darstellung von \mathcal{A} auf einem endlichdimensionalen Hilbertraum \mathcal{H}, sowie einer Darstellung der 'opposite algebra' \mathcal{A}^0 von \mathcal{A}, die durch eine antiunitäre Abbildung J mit $J^2 = 1$ (also $J = J^*$) induziert wird. Die Graduierung γ vertauscht mit J, ebenso wie der Dirac-Operator D. Außerdem soll auch hier zunächst Poincaré-Dualität in K-Theorie gelten, obwohl dieser Begriff für diskrete Räume nicht unbedingt sinnvoll ist.

In der Folge werden nun alle möglichen 0-dimensionalen spektralen Tripel zur Algebra \mathcal{A} beschrieben.

Bemerkung 6.1.1. Es ist ohnehin nur natürlich für endlich-dimensionale Algebren spektrale Tripel der Dimension 0 zu suchen. Es sollte aber trotzdem darauf hingewiesen werden [Kr-Diss], dass es nicht möglich wäre, alle Axiome für eine andere Dimension zu erfüllen. Für eine endlichdimensionale C^*-Algebra ist zum Beispiel die Hochschild-Homologie nur im Grad 0 nichttrivial. Das heißt, dass jeder Hochschild-Zykel vom Grad d für $d > 0$ ein Hochschild-Rand ist. Deshalb kann die Graduierung γ nur für $d = 0$ ein Hochschild-Zykel (mit Koeffizienten in \mathcal{A}^0) der Ordnung d sein. Sonst wäre γ ja exakt, es gäbe also ein Γ so dass $\gamma = b \Gamma$, und dementsprechend müsste die Auswertung jedes Hochschild-Kozykels vom Grad d auf γ verschwinden. Ein solcher Kozykel ist aber mit Hilfe der Spur $\text{Tr}(\gamma \cdot \cdot)$ gegeben. Dann folgte

$$0 = \text{Tr}(\gamma \gamma) = \text{Tr}(1) = \dim \mathcal{H},$$
6.1 Spektrale Tripel für komplexe Algebren

und das wäre offensichtlich ein Widerspruch (wenn \(H \) nichtleer ist).

Auf dem Hilbertraum \(H \) muß sowohl eine Links- als auch eine Rechts-Wirkung der Algebra existieren. (Man kann natürlich ebenso sagen, dass \(\mathcal{A} \) und \(\mathcal{A}^\circ \) auf \(H \) dargestellt sein müssen.) Darüber hinaus sollen diese beiden Wirkungen miteinander kommutieren. Insbesondere wirken dann also die Projektoren \(P_i \) von rechts wie von links auf \(H \) und man kann \(H \) in offensichtlicher Weise als

\[
H = \bigoplus_{i,j=1}^n H_{ij},
\]

mit

\[
H_{ij} = P_i H P_j = P_i P_j^\circ H,
\]

zerlegen. Auf den Unterraum \(H_{ij} \) wirkt dabei die i-te Matrixalgebra von Links, die j-te von Rechts.

Es gibt aber nur eine irreduzible Darstellung einer komplexen Algebra \(M_{n_j}(\mathbb{C}) \), auf \(\mathbb{C}^n_j \). Jeder Hilbertraum \(H_{ij} \), der eine Darstellung dieser Algebra trägt ist deshalb von der Form \(\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j} \) für ein \(N_{ij} \in \mathbb{N} \), wobei \(M_{n_j}(\mathbb{C}) \) auf den zweiten Faktor trivial (als Einheitsmatrix) wirkt.

Die Darstellung der “opposite Algebra” von \(M_{n_j}(\mathbb{C}) \) (die zu \(M_{n_j}(\mathbb{C}) \) isomorph ist) auf \(\mathbb{C}^n_j \) ist für \(m \in M_{n_j}(\mathbb{C}) \) als transponierte Matrix \(m^0 = m^t \) gegeben, und dementsprechend ist \(H_{ij} \) von der Form \(\mathbb{C}^{M_{ij}} \otimes \mathbb{C}^{n_j} \). Die Links- und die Rechts-Wirkung können nur dann miteinander kommutieren, wenn sie in verschiedenen Faktoren dieses Tensorprodukts wirken. Es ist daher klar, dass die Räume \(H_{ij} \) ein Tensorprodukt

\[
H_{ij} = \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j} \otimes \mathbb{C}^{n_j}
\]

sein müssen. Die Darstellung der Algebra ist dann für \(\psi_{ij} \in H_{ij} \) als

\[
a \psi_{ij} = (a_i \otimes \mathbb{1}_{r_{ij}} \otimes \mathbb{1}_{n_j}) \psi_{ij},
\]

die der umgekehrten Algebra als

\[
\psi_{ij} a = a^\circ \psi_{ij} = (\mathbb{1}_{n_i} \otimes \mathbb{1}_{r_{ij}} \otimes a_j^i) \psi_{ij}
\]

gegeben.
Da \(\gamma \) sowohl mit der Links-Wirkung, als auch mit \(J \) kommutieren muss, kommutiert es auch mit der Rechts-Wirkung:

\[
a(\gamma \psi)b = \gamma(a \psi b).
\]

Insbesondere bildet \(\gamma \) die Unterräume \(H_{ij} \) auf sich selbst ab und es existieren selbstadjungierte Isometrien

\[
\Gamma_{ij} : \mathbb{C}^{r_{ij}}_i \rightarrow \mathbb{C}^{r_{ij}}_j,
\]

so dass

\[
\gamma = \mathbb{1}_{n_i} \otimes \Gamma_{ij} \otimes \mathbb{1}_{n_j}.
\]
Die Klassifikation endlicher Geometrien

141

\[\gamma \] muss aber auch ein Element der Darstellung von \(A \otimes A^0 \) auf \(\mathcal{H} \) sein, und deshalb kann \(\Gamma_{ij} \) nur \(\pm \mathbb{I}_{ij} \) sein. Die entsprechenden Vorzeichen werden in der Folge mit \(\gamma_{ij} \) bezeichnet. Also

\[\gamma \psi_{ij} = \gamma_{ij} \psi_{ij} \]

für alle \(\psi_{ij} \in \mathcal{H}_{ij} \).

Es ist wichtig anzumerken, dass dieses Argument unabhängig von der gewählten Basis in \(\mathcal{H} \) ist. Im folgenden kann also noch beliebig über die Basis verfügt werden.

Sei nun, für beliebiges \(\psi \in \mathcal{H} \), \(\psi_{ij} = P_i \psi P_j \in \mathcal{H}_{ij} \). Dann gilt für die Realitätsstruktur \(J \) auf \(\mathcal{H} \), die die obige Rechtswirkung induziert, automatisch

\[
\begin{align*}
J \psi_{ij} &= JP_i \psi P_j \\
&= JP_i (JP_j J) \psi \\
&= (JP_i J)P_j (J \psi) \\
&= P_j (J \psi')P_i \in \mathcal{H}_{ji}.
\end{align*}
\]

Weil aber auch \(J^2 = 1 \) sein muss folgt sofort die Konsistenz-Bedingung:

\[r_{ij} = r_{ji}, \]

und aus \(\gamma J = J \gamma \) erhält man analog

\[\gamma_{ij} = \gamma_{ji}. \]

Eine (denkbare) solche antilineare Abbildung \(J \) wäre offenbar durch

\[
J : \mathcal{H}_{ij} \rightarrow \mathcal{H}_{ji},
\]

\[v_i \otimes v_{ij} \otimes v_j \rightarrow \overline{v_j} \otimes \overline{v_{ij}} \otimes \overline{v_i} \]

gegeben. Völlig analog zu endlichdimensionalen Spin-Mannigfaltigkeiten, ist die Ladungskonjugation, wenn sie existiert, auch hier bis auf unitäre Äquivalenz eindeutig.

Lemma 6.1.2. Es existiert stets eine Orthonormal-Basis der Form

\[\mathcal{H}_{ij} \ni v = v_i \otimes v_{ij} \otimes v_j \text{ in } \mathcal{H}_{jj}, \text{ und analog in } \mathcal{H}_{ji}, \text{ so dass} \]

\[Jv = \overline{v_j} \otimes \overline{v_{ij}} \otimes \overline{v_i} \in \mathcal{H}_{ji} \quad (6.1) \]

ist.

Beweis:

Der Beweis beruht auf folgender Überlegung:

Sei \(\tilde{J} \) eine weitere antilineare Abbildung, die alle Axiome für spektrale Tripel erfüllt, also \(\tilde{J}^2 = 1 \) und \(a^0 = \tilde{J} a^0 \tilde{J} \).

Dann ist \(J \circ \tilde{J} \) eine invertierbare lineare Abbildung, die mit beiden Algebra-Wirkungen kommutiert,

\[J \circ \tilde{J} a = a J \circ \tilde{J}, \]
6.1 Spektrale Tripel für komplexe Algebren

und

\[J \circ \tilde{J} a^o = a^o J \circ \tilde{J}, \]

z.B.

\[
\begin{align*}
J \circ \tilde{J} a &= J \circ \tilde{J} a \tilde{J}^2 \\
&= J (a^*)^o \tilde{J} \\
&= J^2 a J \circ \tilde{J} \\
&= a J \circ \tilde{J}.
\end{align*}
\]

Deshalb hat \(J \circ \tilde{J} \) die Form \(1 \otimes j \otimes 1 \), wobei \(j \) eine lineare Isometrie

\[j : \mathbb{C}^{kl} \rightarrow \mathbb{C}^{lk} \]

ist. (\(J, \tilde{J} \) sind selbstadjungierte Anti-Isometrien.) Also ist

\[\tilde{J} = (1 \otimes j \otimes 1) \circ J \]

und jeder nichttriviale Anteil von \(J \) rührt von einem solchen \(j \) her.

Falls \(k \neq l \) ist damit schon alles gezeigt, denn als unitäre Matrix kann \(j \) durch eine Basistransformation in einem der beiden Räume \(\mathbb{C}^{kl} \) oder \(\mathbb{C}^{lk} \) stets auf die Einheitsmatrix transformiert werden.

Ein etwas subtileres Argument ist für den Fall \(k = l \) erforderlich. Hier ist die Eigenschaft \(jj^\ast = 1 \), die aus \(J^2 = \tilde{J}^2 = 1 \) folgt, wesentlich. In Anbetracht der Unitarität von \(j \) besagt sie einfach, dass \(j \) sogar symmetrisch und orthogonal ist, \(j = j^\dagger = j^{-1} \).

Orthogonale, symmetrische Matrizen lassen sich aber als

\[j = u^\dagger \sigma u \]

mit orthogonalem \(u \) zerlegen. \(\sigma \), eine diagonale Matrix mit Einträgen \(\pm 1 \), kann aber selbst als \(s^\dagger s \) geschrieben werden, wobei \(s \) zum Beispiel eine diagonale Matrix mit Einträgen 1 beziehungsweise \(i \) ist.

Mit der unitären Matrix \(U = su \) ist dann \(j = U^\dagger U \) und es folgt sofort die entsprechende Eigenschaft für \(\tilde{J} \):

\[
(1 \otimes \overline{U} \otimes 1) \tilde{J} \left(1 \otimes U^* \otimes 1\right) = (1 \otimes \overline{U} \otimes 1) \tilde{J} \left(1 \otimes U^\dagger \otimes 1\right)
\]

\[
= (1 \otimes \overline{U} \otimes 1) \left((1 \otimes j \otimes 1) \circ J \right) \left(1 \otimes U^\dagger \otimes 1\right)
\]

\[
= (1 \otimes \overline{U} \tilde{j} U^* \otimes 1) \circ J
\]

\[= J. \]

Die interessanteste Struktur diskreter spektraler Tripel ist der Dirac-Operator. Zugleich ist er am stärksten durch die Axiome eingeschränkt. Betrachtet man die Komponenten

\[P_i P_j^o D_{p_k} P_i^o = D_{ij,kl} : \mathcal{H}^o_{kl} \rightarrow \mathcal{H}^o_{ij}, \]
Die Klassifikation endlicher Geometrien

so folgt aus der Selbstdrajungiertheit unmittelbar

\[D_{i,j,kl} = D_{k,l,ij}^* \]

aus \(JD = DJ \)

\[D_{i,j,kl} = \overline{D_{j,l,ik}}. \]

Des Weiteren antikommutiert \(D \) mit \(\gamma \). Deshalb kann \(D_{i,j,kl} \) nur von Null verschieden sein, wenn \(\gamma_{ij} \gamma_{kl} = -1 \) ist. Die schwerwiegendste Einschränkung an \(D \) stellt die sogenannte "Ordnung-Eins-Bedingung"

\[[[D, a], b^o] = 0, \quad \forall a, b \in \mathcal{A} \quad (6.2) \]

dar.

Für \(\psi_{kl} \in \mathcal{H}_{kl} \) lautet (6.2) zunächst einmal:

\[D_{i,j,kl}(a_k \psi_{kl} b_l) - a_i D_{i,j,kl}(\psi_{kl} b_l) - (D_{i,j,kl}(a_k \psi_{kl})) b_j + a_i (D_{i,j,kl} \psi_{kl}) b_j = 0. \]

Wählt man in dieser Gleichung \(b = P_j \) und \(j \neq l \), so folgt sofort, dass, falls \(i = k \) ist

\[D_{i,j,il} a_i = a_i D_{i,j,il} \]

für jedes \(a \in \mathcal{A} \) gelten muss. Ist \(i \neq k \) so kann es hingegen keine nichttrivialen Abbildungen \(D_{i,j,kl} \) mit der Eigenschaft \(D_{i,j,kl} a_k = a_i D_{i,j,kl} \) geben.

Analog kann man \(a = P_i, i \neq k \) wählen, in diesem Fall erhält man \(D_{i,j,kl} = 0 \) wenn nicht \(j = l \) und zusätzlich

\[(b^o)_j D_{i,j,kj} = D_{i,j,kj} (b^o)_j \]

gilt.

Der Fall \(i = k \) und \(j = l \) ist natürlich ausgeschlossen weil \(D \) nur Räume mit unterschiedlichen Eigenwerten von \(\gamma \) aufeinander abbilden kann. Noch einmal zusammengefasst:

Lemma 6.1.3. Die Komponenten \(D_{i,j,kl} \) verschwinden, außer es ist \(i = k \) oder \(j = l \). Ist \(i = k \) so vertauscht \(D_{i,j,kl} \) mit der entsprechenden Links-Wirkung der Algebra. Falls \(j = l \) ist, so kommutiert \(D_{i,j,kl} \) mit der entsprechenden Rechts-Wirkung.

Bemerkung 6.1.4. Wenn die Algebra kommutativ ist, sollten, analog zum Endlichdimensionalen, die Rechts- und die Linkswirkung der Algebra auf \(\mathcal{H} \) übereinstimmen. Dann müssten alle Räume \(\mathcal{H}_{ij} \) für \(i \neq j \) leer sein. In diesem Fall existierte kein nicht-trivialer Dirac-Operator, weil dieser nur Räume unterschiedlicher Chiralität mit gleichem ersten oder zweiten Index aufeinander abbilden kann, und hier käme jeder Index nur ein einziges Mal vor. Um einen Abstand der Punkte ableiten zu können, arbeitet man daher auch für kommutative Algebren mit den Axiomen für nichtkommutative spektrale Tripel.

Selbstverständlich ist \(\mathcal{H} \) ein endlich erzeugter projektiver Modul über \(\mathcal{A}, \mathbb{C}^n \) ist ja einer über \(M_n(\mathbb{C}) \), mit dem Projektor \(p = \text{diag}(1, 0, \ldots, 0) \). Das einzige noch zu überprüfende Axiom für spektrale Tripel ist die Poincaré-Dualität.
Zur Erinnerung: Die Schnittform der K-Theorie ist eine Abbildung $K_n(A) \times K_n(A) \rightarrow \mathbb{Z}$. Im Fall unendlichdimensionaler, kommutativer C^*-Algebren ist ihre Invertierbarkeit (Poincaré-Dualität) grundlegend für die Charakterisierung des Homotopie-Typs von topologischen Räumen, die mit der Struktur einer glatten Mannigfaltigkeit versehen werden können. Hier ist ihre Bedeutung nicht so klar, und es wäre wohl kaum ein Beinbruch, darauf zu verzichten. Andererseits zeigt es sich aber, dass die Schnittform der K-Theorie eine sehr effektive und elegante Formulierung der Klassifikation endlichdimensionaler spektraler Tripel gestattet.

Für (diskrete komplexe) spektrale Tripel berechnet man die Schnittform für Erzeuger e, f der Gruppe K_0 über:

$$\langle e, f \rangle = \langle D, e \otimes f^* \rangle,$$

wobei $\langle D, E \rangle$ für einen beliebigen Projektor E als:

$$\langle D, E \rangle = \dim \ker_{E, \mathcal{H}}(ED^+E) - \dim \ker_{E, \mathcal{H}}(ED+E)$$

definiert ist. Dabei ist

$$\mathcal{H}_L = \frac{1}{2}(1 + \gamma)\mathcal{H},$$

$$\mathcal{H}_R = \frac{1}{2}(1 - \gamma)\mathcal{H}$$

und

$$D^+ = \frac{1}{4}(1 - \gamma)D(1 + \gamma).$$

$\mathcal{H}_L, \mathcal{H}_R$ sind also die Unterräume der links- beziehungsweise rechtschiralen Spinoren, D^+ der nebendiaionale Block im Dirac-Operator der linkschirale Spinoren auf rechtschirale abbildet. ED^+E ist ein Operator, der $E\mathcal{H}_L$ auf $E\mathcal{H}_R$ abbildet, und $\langle D, E \rangle$ ist der Index dieses Operators.

Für Matrix-Algebren ist die Gruppe K_1 trivial (jede Matrix über \mathbb{C} kann in die Einheitsmatrix deformiert werden). Daher muss man in diesem Fall nur K_0 betrachten. Für $M_n(\mathbb{C})$ sind alle Projektoren äquivalent (in $M_{\infty}(M_n(\mathbb{C}))$ zu der oben angesprochenen diagonalen Matrix mit einer 1 im ersten diagonalen Eintrag und Null überall sonst, die von nun an mit

$$e = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & \vdots \\ \vdots & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Bleibt die Aufgabe $\langle e_i, e_j \rangle$ zu berechnen.
Als Erstes berechnet man die in der Definition auftauchenden Hilberträume:

\[
\dim e_i e_j \mathcal{H}_L = \begin{cases}
 r_{ij} & \text{falls } \gamma_{ij} = -1 \\
 0 & \text{wenn } \gamma_{ij} = 1
\end{cases}
\quad (6.3)
\]

\[
\dim e_i e_j \mathcal{H}_R = \begin{cases}
 r_{ij} & \text{wenn } \gamma_{ij} = 1 \\
 0 & \text{falls } \gamma_{ij} = -1
\end{cases}
\quad (6.4)
\]

Es fällt auf, dass von den beiden Räumen \(e_i e_j \mathcal{H}_L \) und \(e_i e_j \mathcal{H}_R \) immer mindestens einer leer ist. Der Operator \(e_i e_j D^+ e_i e_j \), der sie aufeinander abbildet, hat also entweder ein leeres Bild, oder ein leeres Urbild. Der zu berechnende Index ist also völlig unabhängig von \(D \), und ergibt sich letztlich zu

\[
\langle e_i, e_j \rangle = \gamma_{ij} r_{ij} =: q_{ij},
\]

wobei noch Gebrauch von den Vorzeichen \(\gamma_{ij} \) gemacht wurde.

Die in der vorigen Formel eingeführte, symmetrische Matrix mit ganzzahligen Einträgen

\[
q_{ij} = \gamma_{ij} r_{ij},
\]

die identisch mit der Schnittform der K-Theorie ist, enthält offensichtlich die vollständige Information über \(\mathcal{H} \) (in Form der \(r_{ij} \)), die Algebra-Darstellung, \(\gamma \) und \(J \). Des Weiteren kann man alle wesentlichen Einschränkungen an die Wahl des Dirac-Operators aus der Matrix \(q \) entnehmen. Die einzige Information über das spektrale Tripel, die aus \(q \) nicht hervorgeht, ist die Algebra \(\mathcal{A} \).

Alles in allem sind diskrete spektrale Tripel also durch die Vorgabe der Algebra und der Schnittform \((\mathcal{A}, q) \) charakterisiert.

Wenn man sich einmal an den Umgang mit der Schnittform gewöhnt hat, stellt diese Beschreibung eine sehr effektive und einfache Möglichkeit, die Bedingungen an den Dirac-Operator zusammenzufassen, dar.

6.2 Reelle Matrix-Algebren

Wie weiter oben angedeutet sind reelle endlichdimensionale \(C^* \)-Algebren stets eine Summe von Matrix-Algebren mit reellen, komplexen oder quaternionischen Einträgen. \(M_n(\mathbb{R}) \) kann völlig analog zum Fall komplexer Algebren auf \(\mathbb{C}^n \) dargestellt werden. Die Aussagen über \(\gamma \), \(J \) und den Dirac-Operator bleiben dann vollkommen unverändert.

Fasst man \(M_n(\mathbb{C}) \) als Algebra über \(\mathbb{R} \) auf, so gibt es zwei inäquivalente irreduzible Darstellungen. Neben der fundamentalen Darstellung auf \(\mathbb{C}^n \) existiert nun noch die konjugierte Darstellung auf \(\mathbb{C}^n \), bei der Matrizen als ihr komplex konjugiertes dargestellt sind.

Die reelle Algebra \(M_n(\mathbb{H}) \) hat zwar ebenfalls eine konjugierte Darstellung (durch quaternionische Konjugation der Matrix-Einträge), diese ist aber unitär äquivalent zur fundamentalen Darstellung auf dem \(\mathbb{C}^{2n} \). Für jedes Quaternion \(h \) ist ja \(h^* = \sigma_2 h \sigma_2^* \).
Mit den nach wie vor existenten Projektoren P_i auf die Unteralgebra $\mathcal{A} = M_{n_i}(\mathbb{K}_q)$ lässt sich \mathcal{H} wieder gemäß

$$\mathcal{H} = \bigoplus_{ij} \mathcal{H}_{ij}$$

in invariante Unterräume aufspalten. Da es aber, falls $\mathbb{K}_q = \mathbb{C}$ ist, zwei inäquivalente Darstellungen gibt, können die Räume \mathcal{H}_{ij} weiter als

$$\mathcal{H}_{ij} = \mathcal{H}_{ij} \oplus \mathcal{H}_{ij}$$

zerlegt werden. Analog ist diese Aufspaltung natürlich auch für die Rechts-Wirkung durchzuführen.

Die Unterräume \mathcal{H}_{ij} sind weiterhin die Eigenräume von γ zu den Eigenwerten γ_{ij}. Als (selbstadjungierter) Hochschild-Zykel hat γ den gleichen Wert in der fundamentalen und der konjugierten Darstellung.

Für den Dirac-Operator D ergibt sich ebenfalls nur eine kleine Änderung: Die Ordnungs-Eins-Bedingung besagt ja für die Komponenten $D_{ij,kl}$, dass

$$D_{ij,kl} \pi(a_k) = \pi(a_i) D_{ij,kl}$$

sein muss. (Hier ist es sinnvoll die Darstellung $\pi(a)$ und das Algebra-Element a zu unterscheiden.) Dies verlangt $i = k$ (wenn $D_{ij,kl} \neq 0$), aber auch, dass $D_{ij,kl}$ dann ein Intertwiner der entsprechenden Darstellungen von $M_{n}(\mathbb{K}_q)$ auf \mathcal{H}_{ij}, \mathcal{H}_{kl} ist. Dies ist aber nur dann (nichttrivial) möglich, wenn diese Darstellungen äquivalent sind.

Die Ordnungs-Eins-Bedingung besagt nun also:

\textit{Der Dirac-Operator D kann nur zwischen äquivalenten Darstellungen von \mathcal{A} (beziehungsweise \mathcal{A}^\dagger) vermitteln, und auch dies nur, wenn er mit den entsprechenden Darstellungen vertauscht.}

Die Realitätsstruktur J bildet weiterhin die Räume \mathcal{H}_{ij} auf die Räume $\mathcal{H}_{i^\dagger j}$ ab. Weil für Matrizen $a_j \in M_{n_j}(\mathbb{C})$ die Rechtsdarstellung im Wesentlichen über $a_j^\dagger = J a_j^* J = a^*$ gegeben wird, bildet J dabei, ebenso wie D, nur äquivalente Darstellungen aufeinander ab. Es gilt also zum Beispiel

$$J \mathcal{H}_{ij} = \mathcal{H}_{i^\dagger j}.$$
Derartige Torsion in der K-Theorie bleibt bei der Berechnung der Schnittform unberücksichtigt. (In Sullivans Theorem wird sie durch Tensorieren mit einem geeigneten Ring eliminiert.)

6.3 Differentialalgebra, Metrik und all das

$$\text{Res} \left(|D|^{2-d} \right)$$

über der Menge aller Dirac-Operatoren, die zu der gegebenen Metrik korrespondieren. Diese Methode ist für diskrete spektrale Tripel nicht anwendbar.

In diesem Fall kann man (natürlich) nicht das Wodzicki-Residuum verwenden, dafür existiert aber die gewöhnliche Spur $\text{Tr} \left(|D|^2 \right)$. Des Weiteren ist zu beachten, dass – bei gegebener Metrik – der Hilbertraum für diskrete spektrale Tripel nicht als fest vorgegeben betrachtet werden kann. (Im Gegensatz zum endlichdimensionalen Fall, wo der Hilbertraum unendlichdimensional ist, und nur über die Darstellungen von (A, D) minimiert werden muss.) Man müsste also das Extremum über alle mit den Axiomen verträglichen endlichdimensionalen Hilberäume, die Darstellung der Algebra auf diesen Räumen, und natürlich alle Dirac-Operatoren, die zu der selben, fest vorgegebenen Metrik korrespondieren, suchen.

Der letzte Punkt verursacht die eigentliche Schwierigkeit. Es ist nämlich sehr schwierig, für ein gegebenes diskretes spektrales Tripel die zugehörige Metrik zu berechnen, und das umgekehrte Problem, nämlich die Parametrisierung aller spektralen Tripel, die auf die gleiche, vorgegebene Metrik führen, ist offenbar noch deutlich schwieriger. Ohne diese Parametrisierung ist das obige Extremalprinzip aber nicht wohldefiniert. Es ist auch überhaupt nicht klar, welche Wirkung man anzusetzen hätte. Die Spur existiert ja für jedes (positive) Polynom von D^2, und wie viele Minima dann jeweils existieren würden steht in den Sternen. In manchen Beispielen kann man zeigen, dass die Wirkung $\text{Tr} \left(|D|^2 \right)$ unendliche viele Minima hätte, die zur selben Metrik korrespondieren.

Als einfachen Ausweg betrachtet man einfach alle diskreten spektralen Tripel ohne weitere Einschränkung als “Nichtkommutative Spinmannigfaltigkeiten”. Es wäre aber, im Hinblick auf die Tatsache, dass man die Massenmatrizen im Standardmodell als Dirac-Operator eines diskreten spektralen Tripels interpretieren kann, interessant, eine befriedigende Formulierung dieses Extremalprinzips für diskrete spektrale Tripel zu suchen.

Die Berechnung von Differentialalgebren ist immer sehr heikel, insbesondere weil hier die Darstellung π der Algebra eine wichtige Rolle spielt, und man genau zwischen
(Differential-)Algebra-Elementen und ihrer Darstellung unterscheiden muss. Genauer gesagt, kommt es auf die Fortsetzung von π zu einer Darstellung der universellen Differential-Algebra Ω^n_0 A gemäß

$$\pi(a_0 da_1 d_2 \cdots da_n) = \pi(a_0)[D, \pi(a_1)] \cdots [D, \pi(a_n)]$$

an.

Der Differentialkalkül wird dann wie folgt konstruiert: Die Formen vom Grad Eins, Ω^1(A), erhält man als Quotient von Ω^n_0 A und dem Kern von π. Da π hier treu ist, ist der Bimodul Ω^1(A) also isomorph zu π(Ω^n_0 A).

Zur Konstruktion der Formen von höherem Grad dividiert man durch ein differentielles Ideal,

$$\Omega^n_{D}(A) \equiv \Omega^n_0 A / \mathcal{J}^n, \quad \mathcal{J}^n = \Omega^n_0 A \cap \ker(\pi \cup d\ker \pi).$$

Auf diese Weise erhält man eine Differentialalgebra Ω_D(A), die, wenn man sie nur als Linksmodul über A auffasst, auf Ω dargestellt ist. Allerdings ist ihre Struktur als Differentialalgebra nicht auf Ω dargestellt. (Es gibt keinen Operator P auf Ω, der – analog zu F – das Differential gemäß dω = Pω + (-1)^{ω+1}ωP darstellen würde.) Im klassischen Fall einer endlichdimensionalen Spin-Mannigfaltigkeit sind die p-Formen zum Beispiel als

$$f(x)dx^\mu_1 \wedge \cdots \wedge dx^{\mu_p} \mapsto f(x)\gamma[\mu_1 \cdots \mu_p]$$

dargestellt, wobei die Klammerung der Indizes auf der rechten Seite die totale Antisymmetrisierung in den Indizes \(\mu_1, \ldots, \mu_p\) andeutet soll.

Es sollte kaum überraschen, dass die Differentialalgebra eines diskreten spektralen Tripels bereits durch die Darstellung einer einzigen Eins-Form vollständig beschrieben ist.

Lemma 6.3.1. Der Differentialkalkül erster Ordnung ist ein innerer Differentialkalkül, das heißt es existiert eine Eins-Form

$$\xi = \sum_{i \neq j} P_i dP_j,$$

so dass sich das Differential jedes \(a \in \mathcal{A}\) als

$$da = [\xi, a]$$

berechnen lässt. \(\xi\) hängt mit dem Dirac-Operator über

$$D = \pi(\xi) + J\pi(\xi)J$$

zusammen.
Beweis:
Gemäß der Definition ist $\pi(da) = [D, \pi(a)]$. Zu zeigen ist daher:

$$\sum_{i \neq j} [\pi(P_i) [D, \pi(P_j)], \pi(a)] = [D, \pi(a)].$$

Sei nun $\xi_{ij,kl} = P_i P_j \pi(\xi) P_k P_l$. Für jedes $\psi_{kl} \in \mathcal{H}_{kl}$ ist dann

$$(\pi(\xi) \psi_{kl})_{ij} = \left(\sum_{s \neq t} P_s [D, P_i] \psi_{kl} \right)_{ij}$$

$$= \sum_{s \neq t} (P_s D P_i \psi_{kl})_{ij}$$

$$= (P_i D P_l \psi_{kl})_{ij}$$

$$= \delta_{ij} D_{ij, kl} \psi_{kl}.$$

Man erhält dann sofort die Beziehung $D = \pi(\xi) + J \pi(\xi) J$, wenn man die Eigenschaften von J und D verwendet. Da aber wegen der Ordnung-Eins-Bedingung

$$[J, a] = 0$$

für jedes $a \in \mathcal{A}$ gilt, folgt daraus die Behauptung $da = [D, a] = [\xi, a]$

Es sei noch angemerkt :

$$\xi = \sum_{s \neq j} P_i d P_j = - \sum_i P_i d P_i.$$

Die Eins-Form ξ hat mehrere interessante und ausgesprochen hilfreiche Eigenschaften, die nun kurz skizziert werden sollen.

$\pi(\xi)$ ist selbstadjungiert. Auf dem Kalkül erster Ordnung gibt es deshalb eine natürliche Involution mit der Eigenschaft

$$d \circ * = -(* \circ d),$$

so dass die Darstellung auf \mathcal{H} auch eine $*$-Darstellung ist. Man setzt dazu einfach $\xi^* = \xi$.

Die folgende Beobachtung wird sich im nächsten Kapitel als nützlich erweisen.

Korollar 6.3.2. Das Zentrum des Bimoduls $\Omega^1(\mathcal{A})$ ist trivial: wenn für eine Eins-Form $a \omega = \omega a$ für jedes $a \in \mathcal{A}$ ist, so folgt $\omega = 0$.

Beweis:
Zunächst einmal gilt für Idempotente $e = e^2$, stets

$$e d e = 0.$$
Zum Beweis dieser Aussage differenziere man einfach $0 = \epsilon^2 - \epsilon$ und multipliziere das Resultat von rechts und links mit ϵ. Folglich ist

$$P_i dP_i P_i = P_i \xi P_i = 0.$$

Jedes Element aus $\Omega^1(\mathcal{A})$ kann als endliche Summe von Elementen der Form $\omega = \sum_a b_\alpha \xi_\alpha$ geschrieben werden. Angenommen ω kommutiere mit jedem $a \in \mathcal{A}$, also insbesondere mit P_i.

Multipliziert man nun beide Seiten von $P_i \omega = \omega P_i$ mit P_i, so erhält man (mit $P_i^{2} = P_i$)

$$P_i \omega P_i = P_i \omega$$

Es ist aber

$$P_i \omega P_i = 0,$$

denn P_i kommutiert mit Algebra-Elementen und es ist ja $P_i \xi P_i = 0$. Dann ist also $P_i \omega = 0$ für alle i, und somit auch $\omega = 0$.

\[\blacksquare\]

Bemerkung 6.3.3. Für kommutative Algebren, wo jedes Element $a \in \mathcal{A}$ als $a = \sum_i a_i P_i$, $a_i \in \mathbb{C}$, geschrieben werden kann, bilden die Formen $P_i dP_j$, $i \neq j$ eine Vektorraum-Basis von $\Omega^1(\mathcal{A})$. (Man kann ja mit Hilfe der Bimodul-Regeln $adb = d(ab) - dab$ jede Eins-Form als lineare Kombination dieser Formen schreiben. Zu beachten ist auch $d1 = 0 = \sum_i dP_i$, weshalb die $P_i dP_i$ nicht linear unabhängig von diesen Formen sind.)

Die Darstellung dieser Basis auf \mathcal{H} ist als

$$\pi(P_i dP_j) = P_i D P_j - P_i \delta_{ij} D = P_i D P_j$$

gegeben. Da $i \neq j$, ist dieser Operator gerade die Zusammenfassung aller von Null verschiedenen $D_{ik,jk}$.

Lemma 6.3.4. $d\xi = \xi \xi + \sum P_i \xi P_i$

Beweis:

$$d\xi = - \sum_i dP_i dP_i$$

$$= - \sum_i [\xi, P_i] [\xi, P_i] = \xi \xi + \sum_i P_i \xi P_i.$$

Die Produkte in der obigen Gleichung sind als Produkte innerhalb $\Omega^2_{ij}(\mathcal{A})$ zu verstehen. Im Moment kann damit nur formal gearbeitet werden, weil die Struktur von $\Omega^2_{ij}(\mathcal{A})$ noch nicht ausgearbeitet ist. Genau zu diesem Zweck dient aber die obige Formel:

Die universelle Differentialalgebra $\Omega^2_{\mathcal{A}}(\mathcal{A})$ kann aus $\Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A})$ durch Abdividieren eines entsprechenden Ideals (wodurch $d^2 = 0$ und die Leibniz-Regel erreicht wird) konstruiert werden. Da mit $\Omega^1(\mathcal{A})$ aber auch $\Omega^2(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A})$ auf \mathcal{H} dargestellt ist ($\omega_1 \otimes \omega_2 \mapsto \pi(\omega_1) \pi(\omega_2)$), kann man für die Konstruktion von $\Omega^2_{ij}(\mathcal{A})$ diese Darstellung von $\Omega^1(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A})$ auf \mathcal{H} als Ausgangspunkt nehmen.
Lemma 6.3.5. Sei $\Xi \in \Omega^1(\mathcal{A}) \otimes_\mathcal{A} \Omega^1(\mathcal{A})$ als
\[
\Xi = \sum_i P_i \xi \otimes_\mathcal{A} \xi P_i
\] gegeben.

Das differentielle Ideal vom Grad 2 spaltet sich dann als $\mathcal{J} = \mathcal{J}_1 \oplus \mathcal{J}_2 \oplus \mathcal{J}_3$ auf. (Es ist ein Unter-Bimodul von $\Omega^1(\mathcal{A}) \otimes_\mathcal{A} \Omega^1(\mathcal{A})$ mit $\Omega_D^2(\mathcal{A}) = \Omega^1(\mathcal{A}) \otimes_\mathcal{A} \Omega^1(\mathcal{A})/\mathcal{J}_1$.)

Hierbei ist $\mathcal{J}_1 = \ker \pi$ (wobei π in der üblichen Weise auf $\Omega^1(\mathcal{A}) \otimes_\mathcal{A} \Omega^1(\mathcal{A})$ fortgesetzt wird: $\pi(\omega_1 \otimes_\mathcal{A} \omega_2) = \pi(\omega_1)\pi(\omega_2)$).

\mathcal{J}_2 bezeichnet den Unter-Bimodul, der von den Kommutatoren $[a, \Xi], a \in \mathcal{A}$ erzeugt wird, und \mathcal{J}_3 ist der von Elementen
\[
\sum_i a_i (\xi \otimes_\mathcal{A} \xi - \Xi) b_i,
\]
so dass $\sum_i a_i \xi b_i = 0$ gilt, erzeugte Unter-Bimodul.

Beweis:
Jedes Element von $\Omega^1(\mathcal{A})$ zerfällt in eine endliche Summe von Elementen der Form $\omega = a \xi b$. Man berechnet leicht $d\omega$:
\[
d\omega = \xi \omega + \omega \xi + a(\Xi - \xi \xi)b,
\] und, für den speziellen Fall, dass ω exakt ist, $\omega = da = \xi a - a \xi$:
\[
d^2 a = \Xi a - a \Xi.
\]
Hierbei ist $\Xi \in \Omega_D^1(\mathcal{A})$ das Bild von Ξ.

Deshalb ist die Division durch \mathcal{J}_3 notwendig um die Wohldefiniertheit des Differenti- als d, also $d0 = 0$, zu garantieren. $d^2 \equiv 0$ gilt nur wenn \mathcal{J}_2 abdividiert wird. \mathcal{J}_1 muss eigentlich nicht im Quotienten berücksichtigt werden, wenn man nur eine Differential-Algebra konstruieren will. Man erhält aber nur dann eine Differential-Algebra, die als \mathcal{A}-Modul auf \mathcal{H} dargestellt ist.

Die konkrete Struktur von \mathcal{J} und vor allem die Struktur von $\Omega_D^2(\mathcal{A})$ hängt sehr stark von der speziellen Situation ab. Über den folgenden sehr interessanten Spezialfall, dem auch das diskrete spektrale Tripel des Standardmodells angehört, kann man aber noch etwas mehr sagen.

Zuvor mag es hilfreich sein, die Operatoren $\xi \xi$ und Ξ genauer zu beschreiben. ξ bildet Räume mit gleichem zweiten Index aufeinander ab. Dementsprechend bildet
\[
\Xi = \pi \left(\sum_i P_i \xi \xi P_i \right)
\]
nur Räume mit gleichen ersten und zweiten Index aufeinander ab,

\[\Xi : \mathcal{H}_{ij} \rightarrow \mathcal{H}_{ij}. \]

Man kann \(\Xi \) also als diagonalen Anteil von \(\pi(\xi \otimes_A \xi) \) interpretieren.

Ein interessanter Spezialfall tritt auf, wenn \(\pi(\xi \otimes_A \xi) \) bereits diagonal ist,

\[\pi(\xi \otimes_A \xi) = \pi(\Xi), \]

so dass \(\mathcal{J}_2 \subset \mathcal{J}_1 \). In diesem Fall erleichtert sich die Berechnung von \(\Omega^2_D(\mathcal{A}) \) erheblich:

Lemma 6.3.6. Wenn \(\pi(\xi)\pi(\xi) = \pi(\xi \otimes_A \xi) = \pi(\Xi) \) ist, dann ist \(\Xi = \xi \xi \) und der Differentialkalkül zweiter Ordnung, \(\Omega^2_D(\mathcal{A}) \) bleibt ein innerer Kalkül:

\[d\omega = \xi \omega + \omega \xi, \quad (6.9) \]

für jede Eins-Form \(\omega \). Der Unter-Bimodul \(\mathcal{J} \) setzt sich in diesem Fall aus dem Kern von \(\pi \) und dem von Kommutatoren \([a, \xi \otimes_A \xi] \) erzeugten Ideal zusammen.

Die Voraussetzungen dieses Lemmas sind zum Beispiel dann erfüllt, wenn \(\pi(\xi)\pi(\xi) \) in \(\pi(\mathcal{A}) \) liegt.

Kommutiert \(\pi(\xi)\pi(\xi) \) mit \(\pi(\mathcal{A}) \), so ist \(\mathcal{J} = \ker \pi \) und die Aussage ist sofort völlig klar.

Lemma 6.3.7. Die Gleichung

\[\pi(\xi)\pi(\xi) = \pi(\Xi) \]

gilt dann und nur dann, wenn \(\pi(\xi)\pi(\xi) \) mit dem Zentrum \(\pi(Z(\mathcal{A})) \) von \(\mathcal{A} \) kommutiert.

Beweis:

Kommutiert \(\pi(\xi)\pi(\xi) \) mit dem Zentrum \(\pi(Z(\mathcal{A})) \) so kommutiert es insbesondere mit allen \(\pi(P_i) \). Mit \(\sum_i P_i \equiv 1 \) folgt daraus sofort die behauptete Identität.

Zum Beweis der Umkehrung sei der Einfachheit halber angenommen, es gäbe genau ein \(i \), so dass \(\pi(P_i) \) nicht mit \(\pi(\xi)\pi(\xi) \) kommutiert. Der Kommutator sei mit \(\rho \) bezeichnet. In diesem Fall ergibt explizite Berechnung den Widerspruch \(\pi(\xi)\pi(\xi) - \pi(\Xi) = \rho \).

\[\blacksquare \]

Damit sind diejenigen spektralen Tripel für welche dieser Spezialfall eintritt, bereits sehr genau charakterisiert. \(\pi(\xi)\pi(\xi) \) kommutiert in jedem Fall auch mit \(\pi(A^n) \). Oben wurde klar, dass darunter jeder der Räume \(H_{ij} \) auf sich selbst abgebildet wird. Die Einschränkung von \(\pi(\xi)\pi(\xi) \) auf einen Raum \(H_{ij} \) muss daher (in der Aufspaltung von \(H_{ij} \) als Tensorprodukt) von der Form \(T_{ij} \otimes \text{id} \) sein. (Insbesondere ist das dann der Fall, wenn \(D^2 \sim \mathbb{1} \) ist).

In physikalischen Anwendungen verwendet man die Differential-Algebra vor allem zur Bestimmung des Raums der Eichpotentiale (Zusammenhänge), die, wie üblich, durch selbstadjuangierte Eins-Formen beschrieben sind.
Korollar 6.3.8. Ist H eine selbstadjungierte Eins-Form und $F(H) = dH + HH$ die zugehörige Krümmung, dann ist, wenn der Differentialkalkül ein innerer ist,

$$F(-2\xi) = 0.$$

Selbstverständlich sind auch alle Eichungen $u\xi u^* + ud(u^*)$ des somit gefundenen Minimums ξ von $S(H) = \text{Tr}(F^2(H))$ Lösungen.

Man muss aber darauf hinweisen, dass dies nur eine formale Lösung ist. Bei den physikalischen Anwendungen wird das diskrete spektrale Tripel mit dem spektralen Tripel der Spin-Struktur auf der Raumzeit tensoriert. In diesem Fall kann es passieren, dass der vom diskreten spektralen Tripel herrührende Anteil der Zwei-Formen, vollständig durch das differentielle Ideal, welches von dem spektralen Tripel der Raumzeit herrührt, abdividiert wird. Tritt dieser Fall nicht auf, so sagt obiges Korollar, dass es in jedem Fall eine spontane Symmetriebrechung geben wird. Die skalaren Felder, welche als Komponenten der vom diskreten Anteil stammenden Eins-Formen auftreten, haben dann einen nichtverschwindenden Vakuum-Erwartungswert 2ξ. Die verbleibende Symmetrie ist offenbar genau diejenige Untergruppe der inneren Automorphismen der Algebra, die den Dirac-Operator (und somit ξ) invariant lässt.

An dieser Stelle lässt sich nicht mehr über Ω_D aussagen. Zum Abschluß dieses Abschnitts folgen noch ein paar, kurze, lose zusammenhängende Bemerkungen zu verschiedenen Aspekten von spektralen Tripeln.

Da der Hilbertraum \mathcal{H} eines spektralen Tripels als Bimodul über der Algebra Tensorprodukte $\mathcal{H} \otimes_A \mathcal{H}^*$ (wobei $\mathcal{H}^* \cong J\mathcal{H}$ den konjugierten Hilbertraum bezeichnet) gestattet, ist es aber ohnehin interessant, diese etwas genauer unter die Lupe zu nehmen.

Lemma 6.3.9.

$$\mathcal{H} \otimes_A \mathcal{H}^* \cong \bigoplus_{i,j,k} \text{End}_A(\mathcal{H}_{ij}, \mathcal{H}_{kj}).$$

Beweis: Es ist klar, dass alle Tensorprodukte $\mathcal{H}_{ij} \otimes_A \mathcal{H}_{kl}^*$ über der Algebra verschwinden, wenn $j \neq k$ ist. Zum Beweis betrachte man Algebra-Elemente $a = P_k a$. Der Rest ist straight-forward.

Das Tensorprodukt $\mathcal{H} \otimes_A \mathcal{H}^*$ weist also durchaus eine große Ähnlichkeit zum Bild der universellen Differentialalgebra auf. Differentialformen können ja ebenfalls nur Räume mit gleichem zweiten Index aufeinander abbilden, und sie kommutieren dann auch mit der Wirkung der Algebra auf diese Unterräume.
Im Allgemeinen wird die Differentialalgebra aber nicht isomorph zum obigen Tensorprodukt sein. Es müssen zum Beispiel nicht alle (erlaubten) $D_{ij,kj}$ von Null verschieden sein, und daher werden in der Regel auch nicht alle Elemente von $\text{End}_A(\mathcal{H}_{ij,\mathcal{H}_{kj}})$ in der Differentialalgebra vertreten sein. (Darüber hinaus sind ohnehin nicht alle $D_{ij,kj}$ erlaubt.)

In einigen einfachen Beispielen besteht dieser Isomorphismus allerdings. Es wäre sicher interessant, herauszufinden, unter welchen Voraussetzungen die Algebra und das Bild der universellen Differentialalgebra isomorph sind.

In \mathbb{R} wird \mathcal{H}_d als Raum der Fermion-Antifermion Bindungszustände interpretiert. Elemente dieses Raums sind für endlichdimensionale kommutative Geometrien von der Form

$$\psi(x) = \sum_i \psi_{1,i}(x) \otimes \psi_{2,i}(x)$$

mit $\psi_{1,i}, \psi_{2,i} \in \mathcal{H}$. Auch diese Interpretation erscheint hier schwierig. Für das spektrale Tripel des Standardmodells, enthielt $\mathcal{H} \otimes_A \mathcal{H}^*$ zum Beispiel auch Antiquark-Lepton “Bindungszustände”.

Die Darstellung auf dem Hilbertraum \mathcal{H} induziert eine natürliche Spur auf der Algebra \mathcal{A}, welche sich zu einer Spur auf der Differentialalgebra $\Omega_D(\mathcal{A})$ fortsetzt. Damit erhält man auch ein Skalarprodukt auf den Formen gemäß

$$\langle \omega_1, \omega_2 \rangle = \text{tr}\left(\omega_1^\dagger \omega_2\right).$$

Für kommutative Algebren berechnet sich das Skalarprodukt der Basis-Formen zu:

$$\langle P_i dP_j, P_k dP_l \rangle = \text{tr}\left(\pi^*(P_i dP_j) \pi(P_k dP_l)\right) = \delta_{ik} \delta_{jl} \sum_p \text{tr}(D_{1ip}D_{1jp}).$$

Bezüglich dieses Skalarproduktes ist die Basis also orthogonal. Der Operator unter der Spur im letzten Ausdruck dieser Gleichung ist ein positiver Operator von H_{π} auf sich selbst. Die Norm einer der Formen $P_i dP_j$ verschwindet offenbar nur dann, wenn $D_{1ip} = 0$ für alle p ist, und dies bedeutet, dass die entsprechende Form selbst verschwindet. Das Skalarprodukt ist demnach positiv definit.

Im Gegensatz zum endlichdimensionalen Fall ist dieses Skalarprodukt aber keineswegs eindeutig (bis auf Skalierung).

Es kann in der folgenden Weise modifiziert werden:

$$\langle \omega, \rho \rangle_z = \text{tr}\left(\pi(\omega) \pi(\rho)^\dagger\right),$$

wobei z ein Operator ist, welcher selbstadjungiert ist, und, um die Eichinvarianz zu garantieren, auch mit der Algebra kommutieren sollte. Es ist in Anlehnung an den
Die Klassifikation endlicher Geometrien

klassischen Fall auch sinnvoll, wenn auch nicht zwingend erforderlich, z so zu wählen, dass es mit γ und dem "Laplace-Operator" D^2 (dann ist z insbesondere konstant auf der Raumzeit) kommutiert.

Für physikalische Modelle spielt z die Rolle einer verallgemeinerten Kopplungskonstanten und es sollte daher nur experimentell festgelegt werden [MP]. Man kann z aber auch verwenden um zusätzliche Symmetrien etablieren zu können. Für die Algebra der Funktionen auf einer diskreten Gruppe wird man z so wählen, dass das Skalarprodukt der Formen mit dem vom Haar-Maß induzierten übereinstimmt.

Außer für einige wenige Spezialfälle, ist es im Allgemeinen äußerst schwierig eine Metrik als A-bilineare Abbildung $\Omega^1(A) \times \Omega^1(A) \rightarrow A$ zu finden. Die erste Schwierigkeit liegt im Auffinden einer Basis als Links-Modul über A von $\Omega^1(A)$. (Dies gelingt nur in Beispielen.) Wenn man jede Eins-Form eindeutig als $\alpha = \sum_m a_m \epsilon_m$ mit $a_m \in A$ schreiben könnte, so wäre eine solche Metrik auf den ersten Blick als $(\alpha, \beta) = \sum_m b_m^* a_m$ gegeben. Mit dieser Definition gilt dann nämlich

$$(\alpha a, \beta b) = b^*(\alpha, \beta) a, \quad \forall a, b \in A,$$

die Gleichung $(\alpha a, b\beta) = b^*(\alpha, \beta) a$ kann so aber nicht sichergestellt werden. Im Gegensatz zum klassischen Fall kommutieren Einsformen und Algebra-Elemente hier nämlich nicht.

Es ist aber Teil der Axiome für spektrale Tripel, dass eine solche Bilinearform

$$(\cdot, \cdot) : \mathcal{H} \otimes \mathcal{H} \rightarrow A$$

die implizit über die Gleichung

$$\text{tr} \{ b(\psi, \varphi) a^* \} = \langle a \psi, b \varphi \rangle, \quad \forall \psi, \varphi \in \mathcal{H}$$

definiert ist, für Spinoren existiert. Mit

$$\mathcal{H}_{ij} \ni \psi_{ij} = \sum_{i} x_{ij}^\alpha \otimes X_{ij}^\alpha,$$

wobei $x_{ij}^\alpha \in \mathbb{C}^n_i$ beziehungsweise $X_{ij}^\alpha \in \mathcal{H}^{q_i} \otimes \mathcal{H}^{q_j}$ sind, und analog

$$\varphi_{ij} = \sum_{i} y_{ij}^\alpha \otimes Y_{ij}^\alpha,$$

schreibt sich (\cdot, \cdot) dann explizit als

$$(\psi, \varphi) = \sum_{ij} P_i P_j \left[\sum_{\alpha, \beta} \text{tr} \left\{ y_{ij}^{\beta}(X_{ij}^\alpha)^* \cdot y_{ij}^{\beta}(X_{ij}^\alpha)^* \otimes \mathbb{1}_{q_i} \otimes \mathbb{1}_{n_j} \right\} P_i P_j^0 \right].$$

6.4 Der letzte Schritt

Streng genommen ist die Klassifikation der endlichen spektralen Tripel modulo unitärer Äquivalenz an diesem Punkt noch nicht vollständig abgeschlossen. Die Freiheit der Basiswahl in \mathcal{H} wurde bisher nämlich einzig dazu verwendet, eine kanonische Form
der Algebra-Darstellung, J und γ zu finden. Es existieren aber immer noch genug unitäre Transformationen auf \mathcal{H}, die mit \mathcal{A}, J und γ vertauschen. Damit ließe sich im Prinzip nun auch eine kanonische Form für den Dirac-Operator D angeben. Für den allgemeinen Fall einer abstrakten Algebra $\oplus_i M_n_i(\mathbb{C})$ gestaltet sich die Durchführung dieses Vorhabens wegen der mannigfaltigen Fallunterscheidungen aber sehr schwierig. Im nächsten Abschnitt wird die Klassifikation für einzelne, einfache Beispiele vervollständigt.

Die grundsätzliche Struktur der noch verbliebenen Freiheit bei der Wahl der Basis in \mathcal{H} kann man aber sehr leicht charakterisieren:

Gesucht sind, wie oben angedeutet, unitäre Operatoren U auf $\mathcal{H} = \oplus_{ij} \mathcal{H}_{ij}$, die sowohl mit der Darstellung der Algebra als auch mit der Realitätsstruktur J vertauschen. (Mit γ kommutieren sie ohnehin, denn $\gamma \in \pi(\mathcal{A}) \otimes \pi^\gamma(\mathcal{A})$.)

Aus $P_i UP_i = P_i U$, beziehungsweise $P_i^n U P_i^n = P_i^n U$ folgt dann wie zuvor

$$U \mathcal{H}_{ij} = \mathcal{H}_{ij}.$$

U ist also blockdiagonal mit entsprechenden Blöcken U_{ij}. Diese sind, da sie mit der Algebra und J kommutieren müssen, notwendigerweise von der Form

$$U_{ij} = \mathbb{1}_{n_i} \otimes u_{ij} \otimes \mathbb{1}_{n_j},$$

mit unitären Matrizen $u_{ij} : \mathbb{C}^{n_i} \to \mathbb{C}^{n_j}$, U kommutiert nur dann mit J wenn zudem auch

$$u_{ij} = \overline{u_{ji}}$$

für die entsprechenden Matrizen gilt.

Die Blöcke $D_{ij,kj} = d_{ij,k} \otimes \mathbb{1}_{n_j}$ des Dirac-Operators transformieren sich, für $D \mapsto UD^\ast U^\ast$, als

$$d_{ij,k} \mapsto (\mathbb{1}_{n_i} \otimes u_{ij}) d_{ij,k} (\mathbb{1}_{n_k} \otimes u_{kj}).$$ (6.10)

Die analogen Blöcke $D_{ji,jk} = \mathbb{1}_{n_i} \otimes \overline{d_{ijk}}$ transformieren sich entsprechend komplex-konjugiert.

Der letzte Schritt der Klassifikation würde also darin bestehen, Dirac-Operatoren, die gemäß (6.10) äquivalent sind, zu identifizieren.

Im kommutativen Fall, wenn alle $n_i = 1$ sind, würde man wie folgt vorgehen:

Ist nun also $|q_{ij}| = |q_{kj}|$, so ist d_{ijk} eine quadratische Matrix und kann mit geeignet gewählten Transformationen (6.10) diagonalisiert werden. Dies setzt natürlich voraus, dass die Transformationen u_{ij} und u_{kj} beide frei wählbar sind, also nicht schon durch die Diagonalisierung eines anderen Blockes festgelegt wurden. Kann man nur über eine
Die Klassifikation endlicher Geometrien 157

der beiden Transformation frei verfügbar, so kann man aber immer noch erreichen, dass d_{ijk} auf die Form einer hermiteschen Matrix transformiert wird. In der Notation des obigen Beispiels würde man zum Beispiel

$$A \mapsto AWV^*$$

wählen. Offenbar ist die entsprechende unitäre Transformation auch dadurch eindeutig festgelegt.

Mehr kann man über den allgemeinen Fall nicht aussagen. Also zu den Beispielen...

6.4.1 Einfache Beispiele

Das interessanteste Beispiel für ein spektrales Tripel, das bei der Beschreibung des Standardmodells verwendet wird, wird im nächsten Abschnitt besprochen. Die oben ausgearbeitete Klassifikation sollte aber wenigstens für die einfachsten Beispiele illustriert werden. Im folgenden Kapitel werden auch noch einige Beispiele, die mit diskreten Gruppen assoziiert sind, folgen. Besonders wichtig ist die vollständige Klassifikation bei der Quantisierung, die im neunten Kapitel besprochen wird. Dort finden sich dann naturgemäß auch die am besten ausgearbeiteten Beispiele. Die folgenden Beispiele sollen einer Veranschaulichung der Klassifikation dienen, werden später aber auch als Spielzeugmodelle zur Quantisierung dienen.

Der Klassiker unter den diskreten nichtkommutativen Geometrien ist der Zwei-Punkt-Raum $\mathcal{A} = \mathbb{C}^2$. Diskrete spektrale Tripel sind dann durch invertierbare, symmetrische 2×2-Matrizen mit ganzzahligen Einträgen klassifiziert. Die spektralen Tripel der niedrigsten möglichen Dimension, 2, sind demnach durch

$$q = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \quad \text{oder} \quad q = \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

gegeben. Für keines dieser spektralen Tripel existiert ein nichttrivialer Dirac-Operator. Das einfachste spektrale Tripel mit einem nichttrivialen Dirac-Operator ist durch

$$q = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

bestimmt. In diesem Fall ist der Dirac-Operator durch eine komplexe Zahl $D_{12,11} = D_{21,12} = D_{11,12} = D_{11,21} \equiv m$ vollständig festgelegt. Man kann aber immer noch beliebige unitäre Transformationen auf dem eindimensionalen Unterraum \mathcal{H}_{12} durchführen. Auf diese Weise kann man stets die Phase von m eliminieren. Die unitären Äquivalenzklassen von Dirac-Operatoren sind also durch eine nichtnegative reelle Zahl m charakterisiert. Rechnet man nun den Abstand der beiden reinen Zustände der Algebra \mathbb{C}^2 mit der Connesschen Formel

$$d(\xi_1,\xi_2) = \sup_{\|D\alpha\| \leq 1} \{|\xi_1(\alpha) - \xi_2(\alpha)|\}$$

(6.11)
aus, so erhält man das bekannte Ergebnis \(d(1,2) = \frac{1}{\|D\|} = \frac{1}{m}\).

Das einfachste spektrale Tripel mit einem nichttrivialen Dirac-Operator, bei dem die Automorphismusgruppe \(S_2\) von \(C^2\) auf \(\mathcal{H}\) dargestellt ist (darauf wird im nächsten Kapitel kurz eingegangen) ist dann schon vierdimensional,

\[
q = \begin{pmatrix} -1 & 1 \\ 1 & \pm 1 \end{pmatrix}.
\]

Für negatives \(q_{22}\) enthält der Dirac-Operator nun zwei nichttriviale Zahlen, \(D_{11,12} = m\) und \(D_{12,22} = \mu\), von denen man aber nur eine nichtnegativ reell wählen kann. Es steht dazu ja nach wie vor nur die eine Phase \(U_{12}\) zur Verfügung. Man überzeugt sich leicht, dass

\[
d(1,2) = \frac{1}{\max\{|m|,|\mu|\}}
\]

ist. In einer geeigneten Basis haben Dirac-Operator und Algebra-Darstellung dann nämlich die Form

\[
D = \begin{pmatrix} 0 & m & \mu & 0 \\ m & 0 & 0 & m \\ \mu & 0 & 0 & \mu \\ 0 & m & \mu & 0 \end{pmatrix}, \quad \mathcal{A} \ni (z_1, z_2) = a \mapsto \begin{pmatrix} z_1 & 0 & 0 & 0 \\ 0 & z_1 & 0 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & 0 & z_2 \end{pmatrix},
\]

und somit ist

\[
[D, a] = \begin{pmatrix} 0 & 0 & \mu(z_2 - z_1) & 0 \\ 0 & 0 & 0 & m(z_2 - z_1) \\ \mu(z_1 - z_2) & 0 & 0 & 0 \\ 0 & m(z_2 - z_1) & 0 & 0 \end{pmatrix}, \quad (6.12)
\]

Letzterer Operator hat die beiden Eigenwerte \(\|\mu(z_2 - z_1)\|\) und \(\|m(z_2 - z_1)\|\), womit obige Behauptung klar sein dürfte. Erhöht man die Zahl der “Familien”, zum Beispiel mit

\[
q = \begin{pmatrix} -N & N \\ N & -N \end{pmatrix},
\]

so haben die Differentiale \([D, a]\) immer noch die Form (6.12), \(m, \mu\) sind nun aber \((N \times N)\)-Matrizen. Offenbar bleibt \(d(1,2) = \frac{1}{\delta}\), mit \(\delta = \max\{|m|,|\mu|\}\). Die Beschreibung der unitären Äquivalenzklassen gestaltet sich nun etwas komplizierter:

Unitäre Operatoren, die mit \(\mathcal{A}\) und \(J\) vertauschen, haben Blockgestalt mit entsprechenden Blöcken

\[
U_{11} = \overline{U}_{11}, \quad U_{22} = \overline{U}_{22}, \quad U_{12} = \overline{U}_{21}.
\]

In diesem Fall ist also \(U_{21}\) eine unitäre \((N \times N)\)-Matrix, wohingegen \(U_{11}, U_{22}\) orthogonale Matrizen sind. Die beiden Blöcke von \(D\) transformieren sich als:

\[
m \mapsto U_{12} m U_{11}^t, \\
\mu \mapsto U_{12} \mu U_{22}^t.
\]
Da die U_{ij} orthogonale Matrizen sind, genügen diese Transformationen nicht einmal um eine der beiden Matrizen m, μ zu diagonalisieren. Es ist im Allgemeinen recht schwierig Äquivalenzklassen von $(N \times N)$-Matrizen unter derartigen Transformationen anzugeben. Für den Fall $N = 2$ wird dieses Problem im Kapitel “Diskretes Trommeln” gelöst. Eine Lösung für allgemeines N wird aber noch gesucht.

Als letztes Beispiel sei ein spektrales Tripel für die Algebra

$$\mathcal{A} = \mathbb{C} \oplus M_2(\mathbb{C})$$

untersucht:

$$q = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}.$$

Der allgemeine Dirac-Operator und die Darstellung der Algebra haben dann die Form

$$D = \begin{pmatrix} 0 & M^t & 0 \\ M & 0 & 0 \\ 0 & M & 0 \end{pmatrix}, \quad \mathcal{A} \ni (z, \lambda) = a \mapsto \begin{pmatrix} z \mathbb{1}_2 & 0 & 0 \\ 0 & z \mathbb{1}_2 & 0 \\ 0 & 0 & \lambda \end{pmatrix}.$$

$M : \mathcal{H}_{11} \rightarrow \mathcal{H}_{12}$ ist nunmehr eine (2×2)-Matrix. Man hat dann noch immer die Freiheit der Wahl der Basis (O_{11}) in dem zweidimensionalen Raum \mathcal{H}_{11}. O_{11} muss aber auch mit J, welches in \mathcal{H}_{11} als komplexe Konjugation wirkt, vertauschen. Aus diesem Grund kann O_{11} nur eine orthogonale Matrix sein. Da in dem ebenfalls zweidimensionalen Raum \mathcal{H}_{12} die Algebra $M_2(\mathbb{C})$ (von rechts) wirkt, kann man hier nur noch eine (unbedeutende) globale Phasentransformation durchführen. Für M bedeutet das $M \rightarrow MO_{11}^*$ und da es sehr schwer ist, eine kanonische Form für M unter solchen Transformationen anzugeben, wird vorerst keinerlei Gebrauch von diesen Transformationen gemacht.

Die reinen Zustände der Algebra $M_2(\mathbb{C})$ bilden eine Zwei-Sphäre S^2, die man wie üblich durch Vektoren $\vec{\xi} \in \mathbb{C}^2$ mit $|\vec{\xi}| = 1$ parametrisiert. Hinzu kommt noch der eine reine Zustand ξ auf \mathbb{C}.

In diesem Ausnahme-Beispiel kann eine vollständige analytische Berechnung der Metrik durchgeführt werden. Die Rechnung ist aber leider technisch aufwendig, und deshalb werden an dieser Stelle nur zwei Grenzfälle betrachtet. (Die vollständige Rechnung, die ich ohne die Hilfe von A.Holfter ohnehin nicht geschafft hätte, wird an anderer Stelle präsentiert.)

Führt man für beliebige Algebra-Elemente $a = (z, \lambda)$ die Matrix

$$x = \lambda - z \mathbb{1}_2$$

ein, so berechnet sich die Norm von $[D, a]$ zu:

$$\|[D, a]\|^2 = \max\{\|x^* M^* M x\|, \|M x^* x M^*\|\} = \max\{\|M x\|^2, \|x M^*\|^2\}.$$

Man sieht auch sofort, dass M und $U M$, mit unitärem U, zur selben Metrik führen, denn für alle Matrizen A ist

$$\|U A\| = \|A U\| = \|A\|.$$
Der Trick ist nun, dass M auch als Algebra-Element aufgefasst werden kann. Die Normen im obigen Ausdruck können dann ebenfalls als Normen in der Algebra interpretiert werden. So gewappnet kann man nun den Abstand von ξ zu einem beliebigen reinen Zustand ζ berechnen. Zunächst einmal ist für alle (z, λ)

$$\zeta^* \lambda \zeta - z = \zeta^* \lambda \zeta - z \zeta^* \zeta = \zeta^* x \zeta,$$

und folglich gilt

$$d(\xi, \zeta) = \sup_{\|Mx\|,\|xM^*\| \leq 1} \left\{ |\zeta^* x \zeta| \right\}.$$

(6.13)

Damit ist das Ergebnis für einen wichtigen Spezialfall, nämlich $M = m \mathbb{1}_2$, $m \in \mathbb{C}$

(und somit natürlich auch für $M = mU$ mit unitärem U) schon offensichtlich:

Nach der Substitution $\bar{x} = x m$ ergibt sich

$$d(\xi, \zeta) = \frac{1}{|m|} \sup_{\|x\| = 1} \left\{ |\zeta^* \bar{x} \zeta| \right\},$$

und folglich:

Lemma 6.4.1. Für $M = m \mathbb{1}_2$ ist

$$d(\xi, \zeta) = \frac{1}{|m|}.$$

Man sieht auf den ersten Blick, dass das einfach der Abstand der Punkte einer Kugel vom Radius $\frac{1}{|m|}$ zum Ursprung ist. Für zwei beliebige Zustände auf $M_2(\mathbb{C})$ findet man analog

$$d(\zeta_1, \zeta_2) = \frac{1}{|m|} \sup_{\|x\| = 1} \left\{ |\zeta_1^* x \zeta_1 - \zeta_2^* x \zeta_2| \right\}$$

$$= \frac{1}{|m|} \sup_{\|x\| = 1} \left\{ |\text{tr} \left(x \left[\zeta_1 \zeta_1^* - \zeta_2 \zeta_2^* \right] \right)| \right\},$$

wobei im letzten Schritt die Zyklizität der Spur ausgenutzt wurde. Zur Abkürzung sei nun die Matrix

$$L \overset{\text{def}}{=} \frac{1}{|m|} \left(\zeta_1 \zeta_1^* - \zeta_2 \zeta_2^* \right)$$

eingeführt. Damit ist also

$$d(\zeta_1, \zeta_2) = \sup_{\|x\| = 1} \{|\text{tr} (x L)|\}.$$

Schreibt man L als $U_1 \Lambda U_1^*$ mit $\Lambda = \text{diag}(\lambda_1, \lambda_2)$ – die λ_i sind dabei reell und nichtnegativ – so wird aus $\text{tr} (x L)$ natürlich $\text{tr} \left((U_1^* x U_1) \Lambda \right)$. Weil die Matrix $U_1^* x U_1$ aber ebenso wie x die Norm 1 hat, kann ebensogut

$$d(\zeta_1, \zeta_2) = \sup_{\|x\| = 1} \{|\text{tr} (x \Lambda)|\} = \sup_{\|x\| = 1} \{|x_{11} \lambda_1 + x_{22} \lambda_2|\}$$

160

6.4 Der letzte Schritt
Die Klassifikation endlicher Geometrien

geschrieben werden. Für Matrizen der Norm 1 gilt aber für alle Einträge \(|x_{ij}| \leq 1\) und es folgt (wenn man die etwas elegantere Schreibweise \(\text{tr} L^* L\) für die Summe der charakteristischen Werte von \(L\) wählt)

\[
d(\vec{\zeta}_1, \vec{\zeta}_1) = \text{tr} L^* L = \sqrt{\text{tr}(LL^*)} + 2\sqrt{\det(LL^*)}.
\]

Es ist weiter

\[
LL^* = \frac{1}{|m|^2} \left(\vec{\zeta}_1 \vec{\zeta}_1^* - \vec{\zeta}_2 \vec{\zeta}_2^* \right) \left(\vec{\zeta}_1 \vec{\zeta}_1^* - \vec{\zeta}_2 \vec{\zeta}_2^* \right)^* = \frac{1}{|m|^2} \left((\vec{\zeta}_1 - \vec{\zeta}_2)^* (\vec{\zeta}_1 - \vec{\zeta}_2) \right)_2,
\]

wovon man sich am einfachsten durch explizites Berechnen beider Seiten unter Ausnutzung der Normierung der \(\vec{\zeta}_i\) überzeugt. Geschafft:

Lemma 6.4.2. *Es ist für alle \(\vec{\zeta}_1, \vec{\zeta}_1 \in \mathbb{C}P^2\)

\[
d(\vec{\zeta}_1, \vec{\zeta}) = \frac{1}{|m|} \sqrt{(\vec{\zeta}_1 - \vec{\zeta})^* (\vec{\zeta}_1 - \vec{\zeta})}
\]

*Insbesondere ist dieser Abstand invariant unter der Wirkung der Gruppe \(SU(2)\) auf \(\mathbb{C}P^2\), das heißt es gilt für \(U \in SU(2)\) stets

\[
d(\vec{\zeta}_1, \vec{\zeta}_1) = d(U \vec{\zeta}_1, U \vec{\zeta}_1).
\]

In diesem Fall trifft man also auf einen alten Bekannten, die \(SU(2)\)-invariante Metrik auf der Sphäre \(S^2\). Um diese Aussage geometrisch zu untermauern, empfiehlt es sich den Isomorphismus \(\mathbb{C}P^2 \rightarrow S^2\) etwas expliziter anzuwenden. Man führt dazu für \(\vec{\zeta} \in \mathbb{C}^2, |\vec{\zeta}| = 1\) die üblichen reellen Koordinaten

\[
a = 2 \text{Re}(\bar{\zeta}_1 \zeta_2)
\]

\[
b = 2 \text{Im}(\bar{\zeta}_1 \zeta_2)
\]

\[
c = |\zeta_1|^2 - |\zeta_2|^2
\]

ein. Die Wirkung der Gruppe \(SU(2)\) auf \(\mathbb{C}P^2\) induziert dann die entsprechende Wirkung der \(SO(3)\) auf die Zwei-Sphäre. Auf einen Beweis dieser bekannten Tatsache sei hier verzichtet.

Für zwei beliebige reine Zustände \(\vec{\zeta}_1, \vec{\zeta}_2\) findet man dann erwartungsgemäß

\[
d(\vec{\zeta}_1, \vec{\zeta}_2) = \frac{1}{|m|} \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2 + (c_1 - c_2)^2},
\]

den euklidischen Abstand (im \(\mathbb{R}^3\)) von Punkten auf einer Sphäre vom Radius \(R = \frac{1}{|m|}\).

Der zweite leicht zu behandelnde Grenzfall ist der eines singulären \(M\). Ist \(M = 0\), also auch \([D, a] = 0\), so sind offensichtlich alle Punkte unendlich weit voneinander entfernt. Für ein \(M\) vom Rang Eins ist die Diskussion etwas heikler. Es ist dann wie gehabt

\[
d(\xi, \vec{\zeta}) = \sup_{\|M\|, \|\xi\| \leq 1} \left\{ |\xi^* x \vec{\zeta}| \right\}
\]

(6.14)
und
\[d(\zeta_1, \zeta_2) = \sup_{\|Mx\|,\|xM\| \leq 1} \left\{ \text{tr} \left(\zeta_1 x \zeta_1^* - \zeta_2 x \zeta_2^* \right) \right\} \]
zu berechnen. Beschränkt man sich zunächst auf den Fall \(M = \text{diag}(1,0) \), so ist
\[\|Mx\| = |x_{11}|^2 + |x_{12}|^2, \quad \|xM\| = |x_{11}|^2 + |x_{21}|^2. \]
Das Element \(x_{22} \) kann zur Wahl des Supremums
\[d(\xi, \bar{\zeta}) = \sup_{\|Mx\|,\|xM\| \leq 1} \left\{ |x_{11}|\zeta_1^*|^2 + x_{12}\zeta_1\zeta_2 + x_{21}\zeta_2\zeta_1 + x_{22}|\zeta_2|^2 \right\} \]
also vollkommen beliebig gewählt werden. Es folgt dann sofort, dass \(d(\xi, \bar{\zeta}) \) nur dann endlich ist, wenn \(\zeta_2 = 0 \) (\(\Rightarrow \zeta_1 = 1 \)) ist. (Für nichtdiagonales \(M \) wäre die entsprechende Bedingung, dass \(\zeta \) senkrecht zum Kern von \(M \) sein muss, damit es endlichen Abstand von \(\xi \) haben kann.) Im letzteren Fall ist \(d(\xi, \bar{\zeta}) = \frac{1}{m_1} \).

Analog schließt man für zwei Zustände auf \(M_2(\mathbb{C}) \), dass \(d(\zeta_1, \zeta_2) = \infty \) ist, außer es gilt \(\zeta_1^* (\mathcal{M}_{\zeta}) = \zeta_2^* (\mathcal{M}_{\zeta}) \). Wenn diese Bedingung erfüllt ist, ergibt sich aber mit der Abkürzung \(z_i = (\zeta_i), w_i = (\zeta_i)_i \):
\[|\text{tr} \left(\zeta_1 x \zeta_1^* - \zeta_2 x \zeta_2^* \right) | = \left| x_{12}(z_1 \overline{w_1} - w_1 \overline{w_2}) + x_{21}(z_2 \overline{w_1} - w_2 \overline{w_1}) \right| \]
\[= \left| x_{12}Z + x_{21}\overline{Z} \right|. \]
x_{11} wird für das Supremum also den Wert Null annehmen, weil dann \(|x_{12}| = |x_{21}| = \frac{1}{m_1} \) ist, und somit müssen eigentlich nur noch die Phasen von \(x_{12}, x_{21} \) betrachtet werden. Wegen
\[|e^{i\gamma_1 Z} + e^{i\gamma_2 \overline{Z}}| \leq 2|Z| \]
ist klar, wie diese zu wählen sind. Mit den oben verwendeten Koordinaten \(a, b, c \) der Einbettung der reinen Zustände in den \(\mathbb{R}^3 \) folgt dann also:

Lemma 6.4.3. Ist \(M = \text{diag}(m_1,0) \) so ist
\[d(\xi, \bar{\zeta}) = \begin{cases} \frac{1}{m_1} : & \zeta_1 = 1, \quad \zeta_2 = 0, \Rightarrow c = +1 \\ \infty : & \text{sonst} \end{cases} \]

Des Weiteren ist
\[d\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = \begin{cases} \frac{1}{m_1}\sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2} : & c_1 = c_2, \\ \infty : & \text{sonst} \end{cases} \]

(Dies gilt immer noch für den Fall diagonalen \(M \)’s, der allgemeine Fall ist dann aber ohnehin klar.) Es ist anzumerken, dass die Metrik sehr stark von dem zugrunde liegenden spektralen Tripel abhängt. Für
\[q = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} \]
findet man zum Beispiel die gleiche Metrik, die sich hier im gerade betrachteten Spezialfall det $M = 0$ ergibt. Die Zwei-Sphäre wird dann in eine Menge disjunkter Ringe vom Radius $\frac{1}{m_1}$, die unendlich weit voneinander entfernt sind, aufgelöst.

Das allgemeine Ergebnis kann man sich nun schon fast denken: Für beliebiges M ergibt sich ein Rotationsellipsoid, dessen Halbachsen durch die charakteristischen Werte von M bestimmt sind. Der zusätzliche Punkt liegt im Mittelpunkt dieses Rotationsellipsoids. (Sind beide charakteristischen Werte gleich, so entartet der Ellipsoid zu einer Sphäre. Lässt man einen der beiden charakteristischen Werte nach Null streben, so wird das Ellipsoid immer mehr in die Länge gezogen, bis er schließlich aufreißt, und das Bild der disjunkten, unendlich weit voneinander entfernten Ringe entsteht.)

Auffällig an diesem Beispiel ist, dass nur die charakteristischen Werte von M in die Metrik eingehen. Die unitären Äquivalenzklassen von spektralen Tripeln zu dieser Schnittform sind ja durch 6 reelle Parameter zu beschreiben. (Man hat die Freiheit M durch $e^{\alpha MO}$ zu ersetzen, wobei O orthogonal ist. Dadurch reduziert sich die Zahl der reellen Parameter in M um zwei auf insgesamt 6.)

Es ist aber zu bedenken, dass man stets die Freiheit hat, den Raum der reinen Zustände bei der Einbettung in den \mathbb{R}^3 (als Ellipsoide) zu drehen, beziehungsweise: Man hat die freie Wahl der Koordinaten im \mathbb{R}^3. Für \mathbb{CP}^2 bedeutet dies, dass man auch hier die Möglichkeit hat, eine (die gleiche) beliebige $SU(2)$-Transformation U auf allen Zuständen durchzuführen. Daraus folgt schließlich, dass $U MU^*$ und M für jedes $U \in SU(2)$ zur gleichen Metrik führen. Die Nichtbeobachtbarkeit dieser Parameter ist letztlich also eine Folge der Kovarianz

$$d_{U'DU^*}(\zeta_1,\zeta_2) = d_D(U\zeta_1,U\zeta_2)$$

der Metrik. (Das reduziert die Zahl der Parameter auf drei. Wir konnten aber noch keine Anschauung dafür entwickeln, warum der dritte Parameter nicht in die Metrik eingeht.)

Eine wesentliche Lehre, die man daraus ziehen kann, ist, dass die Wirkung der Diffeomorphismen auf dem Raum der reinen Zustände, welche hier eine Wirkung im Raum der Dirac-Operatoren als $M \rightarrow UMU^*$ induziert, und die Wirkung der Diffeomorphismen auf diesen Raum, welche von ihrer Darstellung in \mathcal{H} hier als $M \rightarrow MU$ induziert wird, verschieden voneinander sind. (Das ist allerdings auch nicht besonders überraschend, denn die normierten Vektoren des Hilbertraums stehen – bei den hier gewählten Darstellungen – ja nicht in Eins-zu-Eins Korrespondenz mit reinen Zuständen der Algebra.) Diese Beobachtung wird im neunten Kapitel wichtig sein, wenn es darum geht unabhängige Freiheitsgrade im Dirac-Operator zu identifizieren.

6.5 Die endliche Geometrie des Standardmodells

Barbarus hic ego sum, quia non intellegor ulli

Ovid Tristia 5,10,37

Die ursprüngliche Motivation für die Klassifikation der endlichen spektralen Tripel rührt von ihrer Anwendung auf Eichtheorien und vor allem auf das Standardmodell.
6.5 Die endliche Geometrie des Standardmodells

her. Daher sollte wenigstens kurz gezeigt werden, dass und wie das endliche spektrale Tripel des Standardmodells in der Klassifikation auftaucht. Vor allem dieses Beispiel sollte ja so systematisch wie möglich in dem allgemeinen Rahmen der Klassifikation untersucht werden.

Wie im fünften Kapitel – im Abschnitt über die Nichtkommutative Beschreibung des Standardmodells – dargelegt wurde, spielt hier die reelle Algebra

\[A_f = \mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}) \]

und ihre (graduierte) Darstellung auf dem Hilbertraum \(\mathcal{H}_f \), der alle Fermionen des Standardmodells enthält, die Hauptrolle.

6.5.1 Hilbertraum und Fermionen

Die Wirkung der Algebra von rechts und von links auf \(\mathcal{H}_f \) ist noch einmal in der folgenden Tabelle zusammengetragen:

<table>
<thead>
<tr>
<th>(\mathbb{C}^*)</th>
<th>(\mathbb{C})</th>
<th>(\mathbb{H})</th>
<th>(M_3(\mathbb{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{C})</td>
<td>(\bar{e}_R)</td>
<td>(e_L, \nu_L)</td>
<td>(d_R)</td>
</tr>
<tr>
<td>(\mathbb{H})</td>
<td>(e_L, \nu_L)</td>
<td>(u_L, d_L)</td>
<td></td>
</tr>
<tr>
<td>(M_3(\mathbb{C}))</td>
<td>(d_R)</td>
<td>(u_R)</td>
<td>(u_L, d_L)</td>
</tr>
</tbody>
</table>

Die Tabelle ist so zu lesen, dass die entsprechenden Komponenten der Algebra von links entlang der Spalten und von Rechts entlang der Zeilen wirken. Zum Beispiel: Die linkshändigen Teilchen (Index \(L \)), die per Definition einem Unterraum zum Eigenwert \(-1\) von \(\gamma \) angehören, sind Dubletts auf die die Algebra \(\mathbb{H} \) der Quaternionen wirkt. Die Quarks tragen natürlich Farbe, und auf diese Freiheitsgrade wirkt \(M_3(\mathbb{C}) \). \(\mathbb{C}^* \) symbolisiert, dass die reelle Algebra der komplexen Zahlen als Multiplikation mit \(\bar{z} \) (statt \(z \)) wirkt. \(\bar{e}_R \) bezeichnet das Antiteilchen des rechtshändigen Elektrons.

Die obige Tabelle ist natürlich so angeordnet, dass man die Schnittform \(q \) der K-Theorie sofort ablesen kann. \(q \) ist eine \((3 \times 3) \)-Matrix (die inäquivalenten Darstellungen \(\mathbb{C} \) und \(\mathbb{C}^* \) führen ja auf dieselben Projektoren in \(K_0(\mathcal{A}_f) \)) und hier explizit als

\[q = N_F \begin{pmatrix} 2 & -2 & 2 \\ -2 & 0 & -2 \\ 2 & -2 & 0 \end{pmatrix} \]

gegeben, wobei \(N_F = 3 \) die Zahl der Familien bezeichnet. Man prüft dann auch leicht die Eigenschaft der Poincaré-Dualität nach: \(\det q = -8N_F^2 \neq 0 \).

Allerdings fehlen in diesem Hilbertraum die rechtshändigen Neutrinos, für deren Auftreten es mittlerweile eine sehr gute experimentelle Evidenz gibt. Diese würden, da sie bezüglich aller Wechselwirkungen neutral sind, in das Element \(q_{11} \) eingehten. (Sie transformieren dann unter \(\mathbb{C} \) von rechts und von links, die Antineutrinos unter \(\mathbb{C}^* \), oder umgekehrt.) Fügt man in jeder Familie ein rechtshändiges Neutrino hinzu, so gelangt man zu der entarteten Schnittform

\[q' = N_F \begin{pmatrix} 4 & -2 & 2 \\ -2 & 0 & -2 \\ 2 & -2 & 0 \end{pmatrix}, \quad \det q' = 0. \]
In diesem Fall ist das Axiom der Poincaré-Dualität also verletzt. Das ist allerdings das Einzige das schief geht. (Es stellt auch kein Problem dar eine Massenmatrix für die rechtshändigen Neutrinos einzuführen.) Man sollte sich daher fragen, ob auf dem Axiom der Poincaré-Dualität unbedingt bestanden werden muss. Für endlichdimensionale spektrale Tripel stellt es sicher, dass der zugrundeliegende topologische Raum mit der Struktur einer glatten Mannigfaltigkeit versehen werden kann, was für diskrete Räume aber ohnehin wenig Sinn macht. (Außer dem sehr abstrakten Sinn, dass ein Dirac-Operator existiert und Poincaré-Dualität gewährleistet ist.)

Man kann die Poincaré-Dualität aber auch retten, wenn man statt drei rechtshändige Neutrinos nur deren zwei einführt. In diesem Fall ist die Schnittform nach wie vor invertierbar. Dann wäre natürlich ein Neutrino masselos. Da man in Oszillationsexperimenten aber stets nur die Massendifferenzen \((m_2^2 - m_1^2)\) der beteiligten Neutrinos messen kann, stellt dies keinen Widerspruch zu den bekannten experimentellen Daten dar. Ein solcher Widerspruch ergäbe sich nur, wenn man die Massen aller drei Neutrinos in einer direkten Messung als von Null verschieden finden würde. Weil man die Mischungsmatrix stets ganz in den geladenen Sektor “schieben” kann, würden sich dabei auch keinerlei Einschränkungen an die Mischungswinkel ergeben. (Außer der Unitarität der Mischungsmatrix natürlich).

Das ist allerdings eine sehr häßliche und unnatürliche Lösung, die eigentlich nur zeigt, dass der gegenwärtige Stand der Experimente noch nicht zu einer eindeutigen Antwort auf die Frage, wie viele Neutrinos massiv sind, genügt.

6.5.2 Dirac-Operator, Massenmatrizen und Wechselwirkungen

Der Dirac-Operator des vollständigen spektralen Tripels des Standardmodells ist, bei vorgegebener flacher Metrik auf der vierdimensionalen Raumzeit als

\[
D = i \gamma^\mu \partial_\mu + \gamma_5 D_f + \gamma^\mu (W_\mu + G_\mu + A_\mu) + \gamma_5 Y \phi
\]

gegeben. Hierbei bezeichnet \(D_f\) den Dirac-Operator des diskreten spektralen Tripels zu \(A_f\), und \(\phi\) das Higgs-Dublett (mit Vakuumsverwachtungswert Null), welches als Teil des Eichzusammenhangs (selbstadjungierten Einsformen) interpretiert wird. Die Einsform \(\phi\) ist, genauer gesagt, ein Element aus

\[
C^\infty(\mathbb{R}^4) \otimes \Omega^1_{D_f}(A_f) \subset \Omega^1_{D}(C^\infty(\mathbb{R}^4) \otimes A_f),
\]

und die Anwesenheit des Higgsfelds ist deshalb eine Folge der Nichttrivialität von \(D_f\), der ja als physikalische Massenmatrix interpretiert wird.

Man könnte sich nun natürlich damit zufrieden geben, dass \(D_f\) ein “experimenteller Input” des Modells ist, aber selbst dann muss geklärt werden, wie viele Parameter experimentell zu bestimmen sind, beziehungsweise wie viele freie Parameter ein allgemeiner Dirac-Operator für das diskrete spektrale Tripel des Standardmodells besitzt.
Wie aus der Klassifikation folgt, bildet D_f nur Räume verschiedener Chiralität aufeinander ab, welche in der gleichen Zeile (Spalte) von q stehen, auf die also die gleiche Unteralgebra von \mathcal{A}_f von rechts (links) wirkt.

Man kann die mit allen Axiomen verträglichen Komponenten von D_f also sofort aus der obigen Tabelle entnehmen. Neben den Komponenten, welche den üblichen Massenmatrizen entsprechen, die also linkshändige Leptonen (Quarks) auf rechtshändige Leptonen (Quarks) abbilden

\[
D_f : e_R \leftrightarrow (e_L, \nu_L)
\]
\[
D_f : u_R, d_R \leftrightarrow (u_L, d_L)
\]

findet man dann noch eine weitere Komponente. Diese bildet rechtshändige Anti-u-Quarks auf linkshändige Leptonen ab

\[
D_f : (e_L, \nu_L) \leftrightarrow \bar{u}_R
\]

und vertauscht somit nicht mit der Unteralgebra $M_3(\mathbb{C})$. Dieser Term in D_f führt zu weiteren skalaren Eichbosonen (neben dem Higgs), sogenannten Leptoquarks, die dann auch zu einer Brechung der $SU(3)$-Symmetrie führen. Dies ist in [PSS] erläutert, und dort ist auch ausgeführt, dass das Modell in diesem Fall zu Vorhersagen führt, die nicht mit den experimentellen Schranken an solche Leptoquarks verträglich sind.

Aus den experimentellen Daten folgt also, dass diese Komponente des Dirac-Operators (mit ihren 54 freien Parametern) identisch Null ist. Als Konsequenz dieser Tatsache hat das Modell dann eine zusätzliche Symmetrie, die sogenannte S^0-Realität. Damit ist folgendes gemeint:

Der Hilbertraum \mathcal{H}_f des diskreten spektralen Tripels kann als direkte Summe des Hilbertraums der Teilchen \mathcal{H}_p und des Hilbertraums der Antiteilchen $\overline{\mathcal{H}}_p$ zerlegt werden. Sei ε der orthogonale Operator der \mathcal{H}_p und $\overline{\mathcal{H}}_p$ vertauscht. Es ist also insbesondere $\varepsilon^2 = 1$. Die Realitätsstruktur J_f vertauscht ebenfalls nur Teilchen und Antiteilchen (komplex-konjugiert dabei aber auch). Deshalb kommutiert auch J_f mit dem Operator ε, ebenso wie γ. Der physikalische Dirac-Operator D_f vertauscht aus den gleichen Gründen mit ε, was aber nicht der Fall wäre, wenn die Komponente, die Anti-Quarks und Leptonen aufeinander abbildet, von Null verschieden wäre.

Bemerkung 6.5.1. Wenn man ε als nichttrivialen Generator der Gruppe \mathbb{Z}_2 (beziehungsweise S^0) auffasst, so könnte man (dem folgenden Kapitel vorweggreifend) sagen, das diskrete spektrale Tripel des Standardmodells sei \mathbb{Z}_2-symmetrisch. (Die Algebra \mathcal{A}_f kommutiert mit ε. Sie ist also insbesondere kovariant dargestellt.)

Die Klassifikation endlicher Geometrien

Es wird vielfach behauptet, S^0-Realität des zugrundeliegenden diskreten spektralen Tripels sei eine notwendige Konsistenz-Anforderung an Teilchenmodelle, die man mit Hilfe der Nichtkommutativen Geometrie konstruiert. Da man mit einer euklidischen Signatur der Metrik auf der vierdimensionalen Raumzeit arbeiten muss, gibt es nämlich keine Majorana-Teilchen. (Das Quadrat der Ladungskonjugation C ist -1. Aus $C\psi = \psi$ folgt deshalb sofort $\psi = 0$. Die Forderung der S^0-Realität schliesst aber die Existenz eines Teilchens, das von C auf sich selbst abgebildet wird, aus.) Das obige Beispiel, das ja nur deshalb verworfen werden muss, weil es in Widerspruch zu experimentellen Daten steht, zeigt aber, dass S^0-Realität keinesfalls eine notwendige Bedingung ist, um die Konsistenz des Models zu gewährleisten. Sie ist natürlich hinreichend.

Die Realitätsstruktur des vollständigen spektralen Tripels des Standardmodells ist auf $\mathcal{H} = L^2(\mathbb{R}^4) \otimes \mathcal{J}$ als $J = C \otimes J_f$ gegeben. Die Identifikation von Teilchen und Antiteilchen wird dann dadurch erreicht, dass man die Theorie auf den physikalischen Hilbertraum

$$\mathcal{H}_{\text{phys}} = \{ \psi \in \mathcal{H} \mid J\psi = \psi \}$$

projiziert. Teilchen mit der Eigenschaft $J_f \psi_{\nu i} = \overline{\psi_{\nu i}}$, also Majorana-Teilchen, würden daher nicht zur fermionischen Wirkung beitragen. Wenn es einen Block im diskreten Dirac-Operator gibt, welcher in einen Unterraum \mathcal{H}_{θ_i} mit dieser Eigenschaft abbildet, dann werden natürlich entsprechende skalare Eichbosonen $\phi_{\theta_i, \theta_i}$ existieren, und man sollte sicherstellen, dass diese nicht zur bosonischen Wirkung beitragen. (Zur fermionischen Wirkung tragen sie ohnehin nicht bei, der Raum \mathcal{H}_{θ_i} wird ja herausprojiziert.) Die bosonische Wirkung wird mit Hilfe der (Dixmier)-Spur über $\mathcal{H}_{\text{phys}}$ gebildet, und man überlegt sich leicht, dass diese Bosonen, wenn sie existieren, immer einen nicht-verschwindenden Beitrag zu dieser Wirkung liefern. Um ihre Existenz auszuschließen, muss man daher fordern, dass die entsprechenden Blöcke in D_f verschwinden. Wie das obige Beispiel der Leptoquarks zeigt, bedeutet dies aber nicht, dass das diskrete spektrale Tripel dann automatisch S^0-reell ist.

Im Standardmodell ohne rechtshändige Neutrinos gibt es aber ohnehin keine Fermionen mit der Eigenschaft $J_f \psi = \overline{\psi}$. Die rechtshändigen Neutrinos, die ja zum Raum \mathcal{H}_{θ_1} gehören, könnten allerdings Probleme bereiten. (Bisher hat noch niemand das resultierende Modell untersucht. Deshalb erscheint mir der Konjunktiv angebracht.)

Es ist aber zu bedenken, dass diese Probleme nur deshalb auftreten, weil man mit einer euklidischen Signatur der Metrik arbeitet. In einer Formulierung des Modells mit einer Lorentzschen Signatur, wie sie ohnehin nötig wäre, sollte der Einbau rechtshändiger Neutrinos unproblematisch sein.

Für das diskrete spektrale Tripel des Standardmodells (ohne rechtshändige Neutrinos) gibt es also nur die unabhängigen Blöcke

$$D_{17,21}, \quad D_{13,23} \quad \text{und} \quad D_{13,23}.$$
6.5 Die endliche Geometrie des Standardmodells

Die beiden Blöcke $D_{13,23}, D_{13,23}$ müssen, wegen der Ordnung-Eins-Bedingung mit der Rechts-Wirkung der Algebra $M_3(\mathbb{C})$ kommuitieren, und es gibt daher keine skalaren Eichbosonen, die zu einer Brechung der Gruppe $SU(3)$ führen könnten. Es gilt aber immer noch zu klären, wie viele beobachtbare Parameter ein solcher Dirac-Operator enthält.

Der Raum $\mathcal{H}_{1,1}$ ist dreidimensional ($N_F = 3$) und weil die Algebra hier skalar (multiplizieren mit einer komplexen Zahl) wirkt, hat man auf diesem Raum eine beliebige unitäre (3×3)-Matrix $U_{\mathcal{T}_1}$ als unitäre Äquivalenz zur Verfügung. Auf dem 6-dimensionalen Raum $\mathcal{H}_{21} = \mathbb{C}^2 \otimes \mathbb{C}^3$ wirkt die Algebra aber in Form der Quaternionen, und deshalb sind unitäre Operatoren auf diesem Raum, die mit der Algebra kommutieren, von der Form $1_2 \otimes V_{21}$. Man hat aber die zusätzliche Freiheit von "Eichtransformationen" (hier sind das im physikalischen Sinn globale $SU(2)$-Transformationen). Die Gruppe $SU(2)$ wirkt dabei auf den ersten Faktor des Tensorprodukts \mathcal{H}_{21}. Kombiniert man die $SU(2)$-Transformationen mit unitären Äquivalenzen, so transformiert sich $D_{1,21}$ gemäß

$$D_{1,21} \rightarrow U_{\mathcal{T}_1} D_{1,21} \left(\Sigma \otimes V_{21} \right) \quad U_{\mathcal{T}_1}, V_{21} \in U(3) \quad \Sigma \in SU(2).$$

Diese Freiheit genügt aber offensichtlich nicht um $D_{1,21}$ zu "diagonalisieren". (Schreibt man $D_{1,21} = (M_1, M_2)$ mit (3×3)-Matrizen M_1, M_2, so ist mit diagonalisieren gemeint, dass man $D_{1,21}$ auf die Form $(\Lambda 0_{3 \times 3})$ mit diagonalem Λ transformiert.)

Für $D_{13,23}, D_{13,23}$ gilt natürlich die analoge Aussage. Als Ergebnis kann also festgehalten werden, dass ein allgemeiner Dirac-Operator für das spektrale Trippel des Standardmodells deutlich mehr Parameter enthält, als die im Standardmodell beobachteten. Diese entsprechen natürlich Termen, die man formal auch in die Lagrange-Funktion des Standardmodells hineinschreiben könnte. Diese Terme sind aber nicht invariant unter der ungebrochenen Symmetrie-Gruppe $U(1)_{em}$, zum Beispiel ein Term der Form $e^{\gamma F_1} \nu_L$, und werden deshalb bei der üblichen Konstruktion der Massenterme im Standardmodell nicht berücksichtigt. Insofern ist es auch nicht verwunderlich, dass hier solche Terme auftreten. Es ist ja aus den übrigen Daten des diskreten spektralen Tripels (außer D) a priori nicht klar, ob überhaupt eine Untergruppe von $U(1) \times SU(2)$ ungebrochen bleibt (und welche dies sein wird). Das wird erst durch die (experimentell zu bestimmenden) Parameter in D festgelegt.

Im Standardmodell (ohne rechtshändige Neutrinos) sind, in der obigen Notation,

$$D_{1,21} = (M \nu_0)$$
$$D_{13,23} = (0 \nu_d)$$
$$D_{13,23} = (\nu_u 0).$$

Die Massenmatrix M_i der geladenen Leptonen kann dann mit den unitären Äquivalenzen $U_{\mathcal{T}_1}$ und V_{21} binunitär diagonalisiert werden. Analog diagonalisiert man M_u mit Hilfe von U_{13} und V_{23}. Die Matrix V_{23} ist dann aber schon fixiert, so dass nur noch $U_{\mathcal{T}_1}$ zur Verfügung steht, womit M_d auf die Form $\Lambda_d V_{CKM}$ mit diagonalem Λ_d und unitärem V_{CKM} transformiert werden kann. Es ist recht amüsant, dass die "Famiensymmetrien" des Standardmodells in der nicht-kommutativen Beschreibung als unitäre Äquivalenzen (welche auf endlichdimensiona-
Die Klassifikation endlicher Geometrien

len Riemannschen Spin-Mannigfaltigkeiten die Spin-Gruppe darstellen) interpretiert werden.
Vielleicht ist das ja ein erster Hinweis darauf, dass man mit Hilfe der Nichtkommutativen Geometrie zu einem besseren Verständnis der Zahl der Familien und von Massenmatrizen gelangen kann.
Dazu wäre zweifellos ein weniger naives Modell als das hier besprochene vonnöten, zumal dieses eine sehr geringe Vorhersagekraft besitzt: Allzuviel Parameter des fermionischen Sektors müssen experimentell (als Null) bestimmt werden, und für die Connes-Lott-Wirkung ist auch keine Vorhersage der Parameter des bosonischen Sektors möglich. Darüber hinaus kann das Modell zur Zeit nur euklidisch formuliert werden, was zumindest sehr unästhetisch ist, und außerdem den Einbau rechtshändiger Neutrinos erschwert.
6.5 Die endliche Geometrie des Standardmodells
Kapitel 7

Symmetrien und Ko-...

vom vom zum zum
vom zum zum vom
zum vom vom zum
zum vom vom zum
und zurück

Ernst Jandl

Trotz mancher Einschränkungen gibt es offenbar noch eine Vielzahl diskreter spektraler Tripel. Die Frage inwiefern (wenn überhaupt) sich das diskrete spektrale Tripel des Standardmodells vor anderen diskreten spektralen Tripeln auszeichnet, ist daher durch die Klassifikation nur sehr unbefriedigend beantwortet. Wünschenswert wäre in diesem Zusammenhang vor allem ein Prinzip zur Auszeichnung bestimmter (diskreter) Dirac-Operatoren, die in Teilchenmodellen ja als Fermion-Massenmatrizen interpretiert werden.

Existiert analog zur Sphäre eine Wirkung einer Gruppe als Automorphismen auf die Algebra, so existiert ein ausgezeichneter Dirac-Operator, nämlich der “freie” Dirac-Operator, welcher invariant unter dieser Wirkung ist.

Die offensichtlichste Möglichkeit ist die Verwendung des Haar-Maßes als Spur auf der Algebra. Tatsächlich lässt sich das Haar-Maß problemlos auf die Darstellung der Algebra auf fortsetzen.

Als projektiver Modul über der Algebra könnte der Hilbertraum ein Komodul der entsprechenden Hopf-Algebra sein.

Die Symmetrie des zugrundeliegenden Raumes (beziehungsweise der Algebra) sollte sich auch auf die Differentialalgebra ausdehnen lassen. Man wird dann nach einem bikovarianten Differentialkalkül suchen.

Analog zur Wirkung einer Gruppe lassen sich alle diese Symmetrie-Konzepte im Begriff eines H-ko-symmetrischen spektralen Tripels zusammenfassen. Dieses besteht
dann aus einem spektralen Tripel \((\mathcal{A}, \mathcal{H}, D, \gamma, J)\) und einer Hopf-Algebra \(H\) mit den folgenden Eigenschaften:

- \(H\) (links-)kowirkt sowohl auf \(\mathcal{A}\) als auch auf \(\mathcal{H}\) und diese Kowirkungen kommutieren miteinander

\[
\Delta_{\mathcal{H}}(a\psi) = (\Delta_{\mathcal{A}}(a))(\Delta_{\mathcal{H}}(\psi)) \quad a \in \mathcal{A}, \quad \psi \in \mathcal{H}.
\]

- Der Dirac-Operator und die Graduierung \(\gamma\) sind invariant unter der Kowirkung von \(\Delta_{\mathcal{H}}\):

\[
\Delta_{\mathcal{H}}(D\psi) = (1 \otimes D)\Delta_{\mathcal{H}}(\psi) \quad \psi \in \mathcal{H}.
\]

Andererseits ist jeder Komodul einer Hopf-Algebra \(H\) automatisch auch ein Modul für die duale Hopf-Algebra \(H^*\) (vorausgesetzt natürlich, dass diese sinnvoll zu definieren ist, was bei den in der Folge betrachteten endlichdimensionalen Hopf-Algebren aber kein Problem darstellt). Man erwartet daher (in diesem endlichdimensionalen Fall) eine vollkommene Äquivalenz von \(H\)-ko-symmetrischen spektralen Tripeln und \(H^*\)-symmetrischen spektralen Tripeln, und wird diesmal (ausnahmsweise) auch nicht enttäuscht.

Für kommutatives \(H\), also die Algebra der Funktionen auf einer endlichen Gruppe, existieren erwartungsgemäß immer solche nichttriviale ko-invariante spektrale Tripel, auch wenn man einen (kleinen) Tribut für die Verwendung der nichtkommutativen Axiome zollen muss. Für nichtkommutative Hopf-Algebren wurde aber kein einziges nichttriviales Beispiel gefunden. Die auftreteten Schwierigkeiten werden in der Folge am Beispiel von Gruppenalgebren \(\mathbb{C}G\) illustriert. Eine systematische Untersuchung endlicher Hopf-Symmetrien, die aus den oben angedeuteten Gründen sicher wünschenswert wäre, kann aber leider nicht durchgeführt werden. Im Moment gibt es einfach viel zu wenige nichttriviale Beispiele und eine Klassifikation, wie sie bei endlichen Gruppen existiert, ist für allgemeine endlichdimensionale Hopf-Algebren nicht bekannt. In jedem Fall zeigt sich aber auch hier, dass die Symmetrieanforderungen für nichtkommutative Hopf-Algebren \(H\) eine sehr starke Einschränkung darstellen. Für viele Algebren existiert überhaupt kein ko-invariantes spektrales Tripel.

Bevor man sich nichtkommutative Räume mit speziellen, zusätzlichen Symmetrien anschaut, sollte man zunächst die volle Diffeomorphismen-Gruppe (also die Automorphismen-Gruppe der Algebra) eines beliebigen solchen Raumes genauer beleuchten.

Sei \(\mathcal{A}\) zunächst eine kommutative Algebra \(\mathcal{A} = \mathbb{C}^N\), also die Algebra der Funktionen auf einem Raum mit \(N\) Punkten. Die Diffeomorphismen dieses Raums sind offensichtlich durch die Permutationen der Punkte gegeben. Die Gruppe der Automorphismen der Algebra \(\mathbb{C}^N\) ist demnach isomorph zur Gruppe \(S_N\), der Permutationsgruppe von \(N\) Elementen. Eine Permutation \(\sigma \in S_N\) wirkt auf die Erzeuger \(P_i\) in offensichtlicher Weise

\[
\sigma : P_i \mapsto P_{\sigma^{-1}(i)}.
\]

Auf dem Hilbertraum der quadratintegrabeln Spinoren einer endlichdimensionalen Spin-Mannigfaltigkeit sind Diffeomorphismen \(\phi\) der Mannigfaltigkeit als invertierbare
Symmetrien und Ko-...

Operatoren \(\psi(x) \mapsto \psi(\phi^{-1}(x)) \) dargestellt. Für nulldimensionale spektrale Tripel ist das nicht notwendigerweise erfüllt: Jeder Raum \(H_{ij} \) müsste dann auf den Raum \(H_{\sigma^{-1}(i)\sigma^{-1}(j)} \) invertierbar abgebildet werden. Dies ist aber nur dann möglich wenn all diese Räume die gleiche Dimension haben, wenn also

\[|q_{ij}| = |q_{\sigma^{-1}(i)\sigma^{-1}(j)}| \]

für alle \(i,j \) und alle \(\sigma \in S_N \) gilt. Hier werden beide Indizes von q transformiert, weil es natürlich erscheint, die Darstellung dieser Symmetrie so zu wählen, dass sowohl die Darstellung von \(A \) als auch die von \(A^o \) mittransformiert werden. Insbesondere ist dadurch sichergestellt, dass das transformierte spektrale Tripel unitär äquivalent zu seinem Vorgänger ist.

Es erscheint aber kaum sinnvoll, sich auf spektrale Tripel zu beschränken, die dieser Bedingung genügen. Dabei würden zu viele interessante Beispiele, nämlich gerade die etwas exotischer anmutenden, ausgeschlossen. Außerdem sind in der Klassifikation entsprechen spektrale Tripel zu \(q_{ij} \) und \(q_{\sigma^{-1}(i)\sigma^{-1}(j)} \) (oder auch \(-q_{ij}\) ohnehin unitär äquivalent zueinander, wenn man nicht auf der Nummerierung \(i \) der Unteralgebren besteht, sondern zur Nummerierung \(\sigma^{-1}(i) \) übergeht. Insofern führen Diffeomorphismen also auch für solche Beispiele zu äquivalenten Geometrien.

Einfache Matrix-Algebren \(M_n(\mathbb{C}) \) haben nur innere Automorphismen, die durch unitäre Elemente \(u \) der Algebra gemäß \(m \mapsto umu^* \) gegeben sind. Reine Phasentransformationen kommutieren aber mit allen Matrizen. Deshalb reduziert sich die Gruppe der inneren Automorphismen auf \(SU(n) \). Es gibt aber noch Phasentransformationen mit \(\det = 1 \), welche zu berücksichtigen sind: Die Diffeomorphismusgruppe ist daher als

\[\text{Aut}(M_n(\mathbb{C})) = P \text{SU}(n) = \text{SU}(n)/\mathbb{Z}_n \]

gegeben. Die zyklische Gruppe \(\mathbb{Z}_n \) ist dabei als Untergruppe \(\mathbb{Z}_n \cong \{ q \mathbb{1}, q^n = 1 \} \) in die \(\text{SU}(n) \) eingebettet.

Die inneren Automorphismen sind natürlich automatisch auf \(\mathcal{H} \) dargestellt. Die Wirkung auf die Spinoren ist aber nicht einfach als Links-Wirkung des entsprechenden Algebra-Elementes, sondern als “adjungierte” Wirkung

\[\mathcal{H} \ni \psi \rightarrow \psi^u = u\psi u^* = uJuJ\psi \]

definiert.

Auf diese Weise wird auch die Realitätsstruktur \(J \) respektiert, denn der transformierte Dirac-Operator

\[D^u = u(JuJ)Du^*(Ju^*J) \]

vertauscht wieder mit der Realitätsstruktur \(J \), welche selbst invariant unter diesen Diffeomorphismen bleibt:

\[J^u = u(JuJ)(Ju^*J) \begin{array}{c} J^u \circ J \end{array} u(JuJ)(Ju^*J) = u(JJ)u^*J = (uu^*)J = J. \]
Beweis: Zum Verständnis der folgenden kleinen Rechnung sei noch einmal an die Eigenschaften
\[a(JbJ) = (JbJ)a, \quad a, b \in \mathcal{A} \quad \text{und} \quad JD = DJ \]
der Realitätsstruktur J erinnert. Dann ist
\[
D^u J = u(JuJ)Du^*(Ju^*J)J \\
= u(JuJ)Du^*Ju^* \\
= JuDu(Ju^*J)u^* \\
= J(JuJ)uD(Ju^*J)u^* \\
= Ju(JuJ)Du^*(Ju^*J) \\
= JD^u
\]
Da die Rechts- und Links-Wirkungen der Algebra vertauschen, transformieren sich Algebra-Elemente kovariant unter inneren Diffeomorphismen,
\[
a^u = u(JuJ)au^*(Ju^*J) = u(JuJ)(Ju^*J)au^* = uau^*,
\]
also so wie es sein soll.
Auf den Spinoren schaut die Darstellung \(\psi \mapsto u\psi u^* \) der inneren Automorphismen (nur) auf den ersten Blick wie die adjungierte Darstellung aus. Die Komponenten transformieren sich allerdings gemäß
\[
\psi^u_{ij} = u_i \psi_{ij} u_j^*.
\]
In der Sprache der Eichtheorien tragen die in \(\psi_{ij} \) zusammengefassten Fermionen dementsprechend sowohl \(SU(n_i) \)- als auch \(SU(n_j) \)-Ladungen. Eine Ausnahme bilden die Elemente aus \(\mathcal{H}_{ij} \). Für \(n_i = 1 \) sind die Spinoren aus \(\mathcal{H}_{ij} \) invariant unter inneren Diffeomorphismen; falls \(n_i > 1 \) transformieren sie unter der adjungierten Darstellung.

7.1 Endliche Gruppen und ihre bikovarianten Differentialkalküle

Sei \(G \) eine endliche Gruppe. Die Algebra \(C(G) \) der Funktionen auf \(G \) wird – wie jede endlichdimensionale Algebra von Funktionen – von den Elementen
\[
e_g, \quad g \in G,
\]
mit den Relationen \((e_h(g) = \delta_{g,h}) \)
\[
e_g e_h = \delta_{h,g} e_g
\]
erzeugt. Jede Funktion f auf G kann dann als
\[f = \sum_{g \in G} f^g e_g \quad f_g \in \mathbb{C} \]
geschrieben werden. Die Gruppenstruktur von G macht $C(G)$ zu einer Hopfalgebra,
\[\Delta f(g,h) = f(gh), \quad \Delta : C(G) \to C(G) \otimes C(G) \]
\[S f(g) = f(g^{-1}), \quad S : C(G) \to C(G) \]
\[\varepsilon(f) = f(e) \quad \varepsilon : C(G) \to \mathbb{C} \]
mit e dem neutralen Element von G. Auf den Erzeugern e_g haben diese Ko-Strukturen die Gestalt
\[\Delta e_g = \sum_{h \in G} e_h \otimes e_{h^{-1} g} \]
\[S e_g = e_{g^{-1}} \]
\[\varepsilon(e_g) = \delta_{e,g}, \]
denn:
\[\Delta e_g(k,l) = \sum_{h \in G} e_h(k) \otimes e_{h^{-1} g}(l) \]
\[= \sum_{h \in G} \delta_{h,k} \otimes \delta_{h^{-1} g,l} \]
\[= \delta_{k^{-1} g,l} \]
\[= \delta_{g,kl} \]
\[= e_g(kl). \]

Für das Verständnis der Kovarianz von Differentialkalkülen ist es nützlich, sich das Koprodukt Δ als eine elegante Formulierung der linksregulären Darstellung der Gruppe, also der auf die Funktionen zurückgezogenen (Links-)Wirkung der Gruppe auf sich selbst, vorzustellen.

Mit der Bezeichnung
\[L_h : C(G) \to C(G) \]
\[L_h f(g) \overset{\text{def}}{=} f(hg), \]
ist nämlich
\[L_h e_g = e_{h^{-1} g}, \]
und das Koprodukt kann damit auch als
\[\Delta f = \sum_{h \in G} e_h \otimes L_h f \quad \forall f \in C(G) \]
geschrieben werden.
176

7.1 Endliche Gruppen und ihre bikovarianten Differentialkalküle

Analog kann man die rechtsreguläre Darstellung formulieren, weil nach einer einfachen Verschiebung \(h \to gh^{-1} \) der Summe in der Definition des Koproduktes

\[
\Delta f = \sum_{h \in G} R_h f \otimes e_h \quad \forall f \in C(G),
\]

mit

\[
R_h e_g = e_{gh^{-1}}
\]

ist.

Auf einer Lie-Gruppe kann man diese Gruppenwirkung auch auf äußere Formen zurückziehen, und insbesondere existieren je eine Basis des \(\Omega^1(C(G)) \) aus links- beziehungsweise rechtsinvarianten Einsformen. In der algebraischen Sichtweise gibt es weit mehr als einen Differentialkalkül, aber nur wenige Differentialkalküle gestatten eine Implementierung der Gruppenwirkung. Der äußere Kalkül zeichnet sich also (unter anderem) durch diese Eigenschaft aus. Ganz analog existieren auch für endliche Gruppen solche bikovarianten Differentialkalküle.

Ein Differentialkalkül heißt links-(beziehungsweise rechts-)kovariant [Wdif] wenn man darauf eine Links- (beziehungsweise Rechts-)Wirkung der Gruppe über

\[
\mathcal{L}_g(f_1 \, df_2) = (\mathcal{L}_g f_1) \, df (\mathcal{L}_g f_2) \quad \forall f_1, f_2 \in C(G)
\]

(und analog für \(\mathcal{R} \)) einführen kann. Anders ausgedrückt, gibt es dann eine Links- (Rechts-)Wirkung, welche mit dem Differential \(d \) vertauscht. Diese Gruppenwirkungen können nun wieder in einer entsprechenden Links-(Rechts-)Kowirkung \(\Delta_L \, (\Delta_R) \) zusammengefasst werden, welche auf Differentialen als

\[
\Delta_L(df) = (id \otimes d)(\Delta(f))
\]

\[
\Delta_R(df) = (d \otimes id)(\Delta(f))
\]

definiert ist, und gemäß

\[
\Delta_{R/L}(f_1 \, df_2) = \Delta(f_1) \, \Delta_{R/L}(df_2)
\]

fortgesetzt wird. Wie oben gilt dann wieder für beliebige Einsformen \(\omega \)

\[
\Delta_L \omega = \sum_{h \in G} e_h \otimes \mathcal{L}_h \omega
\]

\[
\Delta_R \omega = \sum_{h \in G} R_h \omega \otimes e_h.
\]

Bemerkung 7.1.1. Im Kapitel über Symmetrien nichtkommutativer Geometrien wurde der Begriff eines bezüglich einer Hopf-Algebra \(H \) symmetrischen spektralen Tripels eingeführt. Darunter versteht man ein reelles, gerades spektrales Tripel \((\mathcal{A}, \mathcal{H}, D, \gamma, J) \) mit der folgenden zusätzlichen Eigenschaft

- \(H \) wirkt auf die Algebra \(\mathcal{A} \), mit der Schreibweise \(a \mapsto h \triangleright a \).
Symmetrien und Ko...

- H ist auf \mathcal{H} dargestellt und die Darstellung von \mathcal{A} auf \mathcal{H} ist kovariant bezüglich H, das heißt es gilt stets

$$h(a\psi) = (h_{(1)} \triangleright a)(h_{(2)}\psi), \quad \forall a \in \mathcal{A}, h \in H, \psi \in \mathcal{H}. \quad (7.1)$$

- Der Dirac-Operator D kommutiert mit der Darstellung von H auf \mathcal{H}:

$$[D, h] = 0, \quad h \in H. \quad (7.2)$$

Auf $\mathcal{A} = C(G)$ wirkt (wie auf jede Hopf-Algebra) die duale Hopf-Algebra (insofern diese existiert). Für endliche Gruppen ist $C(G)^* = \mathbb{C}G$, die Gruppen-Algebra mit ihrem Koprodukt $\Delta g = g \otimes g$. Darstellungen von $\mathbb{C}G$ auf dem Hilbertraum \mathcal{H} eines spektalen Tripels zu $C(G)$ sind nichts anderes als Darstellungen der Gruppe G auf \mathcal{H}. Die geforderte Kovarianz der Darstellung π von $C(G)$, Gleichung (7.1), besagt daher, etwas anders geschrieben:

$$g \pi(f) g^* = \pi(L_g f) \quad \forall f \in C(G), \; g \in G.$$

Aus der Invarianz des Dirac-Operators $gDg^* = D$ folgt damit aber auch

$$g \pi(f_1 \, df_2) g^* = \pi ((L_g f_1) \, d(L_g f_1)).$$

$\Omega^1_D(C(G))$ ist für ein $\mathbb{C}G$-symmetrisches spektrales Tripel also automatisch links-kovariant. Wie später noch klar wird, gilt die Umkehrung dieser Aussage nicht. $\mathbb{C}G$-Symmetrie ist also eine stärkere Forderung als Kovarianz des abgeleiteten Differentialkalküls. So folgt aus der Kovarianz zum Beispiel nicht, dass die Metrik invariant ist.

Jede Differentialalgebra über $C(G)$ kann aus der universellen Differentialalgebra $\Omega_u(C(G))$ durch Abdividieren eines differentiellen Ideals (also durch zusätzliche Relationen) konstruiert werden. In $\Omega_u(C(G))$ gibt es keine Relationen außer der Leibniz-Regel

$$\text{de}_g', \text{de}_g = -\text{e}_{g'} \, \text{de}_g + \delta_{g,g'} \text{de}_g,$$

die man als Bimodul-Relation in $\Omega_u(C(G))$ auffassen kann. Wegen $\sum_{g \in G} e_g = 1$ sind nicht alle Differentiale der Erzeuger linear unabhängig,

$$\sum_{g \in G} \text{de}_g = 0.$$

Eine natürliche lineare Basis in $\Omega^1_u(C(G))$ ist durch

$$e_g \, \text{de}_{g'} \quad \text{für} \quad g \neq g'$$

gegeben, und insbesondere sind diese Formen unabhängig:

Es ist nämlich $e_g \, \text{de}_{g'} \, e_h = \delta_{g',h} \, e_g \, \text{de}_{g'} \, e_h$ und damit folgt dann aus

$$\sum_{g \neq g' \in G} z_{g',g} \, e_g \, \text{de}_{g'} = 0.$$
stets
\[z_{h, h'} e_h \, de_{h'} = 0 \quad \forall h, h' \in G, \]

wenn man von rechts mit \(e_h \), von links mit \(e_{h'} \) multipliziert.

Mit dem gleichen Argument folgt aber auch, dass alle anderen Differentialkalküle aus \(\Omega_u(C(G)) \) dadurch entstehen, dass nach Belieben einige der \(e_g \, de_{g'} \) Null gesetzt werden.

Soll der dabei entstehende Differentialkalkül aber ebenfalls links- beziehungsweise rechtskovariant sein (der universelle Differentialkalkül hat natürlich beide Eigenschaften), so kann man natürlich nicht beliebig viele \(e_g \, de_{g'} \) Null setzen.

Auf der Basis \(e_g \, de_{g'} \) sind die beiden Kowirkungen explizit als

\[\Delta_L(e_g \, de_{g'}) = \sum_{h \in G} e_h \otimes e_{h^{-1}g} \, de_{h^{-1}g'} \]
\[\Delta_R(e_g \, de_{g'}) = \sum_{h \in G} e_{gh^{-1}} \, de_{g'h^{-1}} \otimes e_h \]

gegeben. Daraus schließt man sofort die folgende Konsistenzbedingung für Kovarianz:

Proposition 7.1.2. Setzt man ein \(e_g \, de_{g'} \) Null, so muss in einem linkskovarianten Differentialkalkül der gesamte Orbit \(e_{h^{-1}g} \, de_{h^{-1}g'} \) verschwinden.

Bemerkung 7.1.3. In der mit der Hilfe des Dirac-Operators eines spektralen Tripels gebildeten Differentialalgebra kann jede Einsform als Summe von Termen der Form

\[a \xi b, \quad a, b \in A = C(G), \]

mit \(\xi = \sum_{g \neq g'} e_g \, de_{g'} \) geschrieben werden. Insbesondere ist

\[e_g \, de_{g'} = e_g \xi e_{g'}, \]

und die Darstellung der Basis \(e_g \, de_{g'} \) ist demnach durch die Blöcke \(\xi_{g,k,g'k} \) gegeben.

Kovarianz des Differentialkalküls bedeutet dann also, dass aus \(\xi_{g,k,g'k} = 0 \) für alle \(k \in G \) stets auch

\[\xi_{(h^{-1}g)k,(h^{-1}g')k} = 0 \quad \forall k \in G \]

folgt.

Ein Differentialkalkül, der sowohl links- als auch rechtskovariant ist, wie zum Beispiel der deRham-Komplex auf einer Lie-Gruppe, wird als **bikovarianter Differentialkalkül** bezeichnet. Für die wesentliche Eigenschaft des klassischen Beispiels genügt aber eine „einsitzige“ Kovarianz:

Satz 7.1.4. Woronowicz Existiert auf \(\Omega^1(C(G)) \) eine wohldefinierte Links-(Rechts-)Kowirkung von \(C(G) \), so gibt es eine (Bimodul-)Basis aus invarian ten Einsformen.
Für die Algebra $C(G)$ der Funktionen auf einer endlichen Gruppe G sind die linksinvarianten Formen explizit als

$$\theta^g = \sum_{h \in G} e_{hg} \, de_h$$

gegeben. Man sieht sofort, dass

$$\mathcal{L}_k \theta^g = \theta^g \quad \forall k, g \in G$$

ist, und mit der Links-Kowirkung lässt sich diese Eigenschaft in der Form

$$\Delta_L \theta^g = \sum_{k \in G} e_k \otimes \mathcal{L}_k \theta^g = 1 \otimes \theta^g$$

schreiben.

Analog sind die rechtsinvarianten Formen als

$$\omega^g = \sum_{h \in G} e_{gh} \, de_h \quad \Delta_R \omega^g = \omega^g \otimes 1$$

bestimmt.

Die θ_g sind aber nicht alle linear unabhängig

$$\sum_{g \in G} \theta^g = \sum_{g \in G} \sum_{g \in G} e_{hg} \, de_h = \left(\sum_{h' \in G} e_{h'} \right) \left(\sum_{g \in G} de_{h'g^{-1}} \right) = 0.$$

Aus diesem Grund beschränkt man sich auf die Menge $\{\theta^g \mid g \neq e\}$, deren Elemente eine Bimodul-Basis in $\Omega^1_u(C(G))$ bildet. Jede Einsform ω lässt sich damit als

$$\omega = \sum_{e \neq g \in G} f_g \theta^g \quad f_g \in C(G)$$

schreiben. Insbesondere ist

$$de_h = \sum_{e \neq g \in G} (e_{hg} - e_h) \theta^g \quad \text{und} \quad e_{g'} \, de_g = e_{g'} \theta^{g^{-1}g'}.$$

Aus der letzteren Gleichung kann man auch die Bimodul-Relation

$$\theta^g f = (\mathcal{R}_{g^{-1}} f) \theta^g$$

ableiten. Unter der Rechtswirkung der Gruppe transformieren sich die linksinvarianten Formen gemäß

$$\mathcal{R}_k \theta^g = \sum_{h \in G} e_{hgk^{-1}} \, de_{hk^{-1}}$$

$$= \sum_{h \in G} e_{hgk^{-1}} \, de_{hk^{-1}}$$

$$= \sum_{h' \in G} e_{h'k^gk^{-1}} \, de_{h'}$$

$$= \theta^{gk^{-1}}.$$
beziehungsweise
\[\Delta_R \Theta^\theta = \sum_{h \in G} \Theta^h h^{-1} \otimes e_h. \]

Ein Differentialkalkül ist also genau dann bikovariant, wenn mit einem \(\Theta^\theta \) stets auch der gesamte adjungierte Orbit \(\Theta^h h^{-1} \) verschwindet. Für die rechtsinvarianten Formen \(\omega^\theta \) gelten natürlich analoge Aussagen.

Bemerkung 7.1.5. Die Darstellung der linksinvarianten Formen auf dem Hilbertraum \(\mathcal{H} \) eines spektralen Tripels zu \(C(G) \) berechnet sich als
\[(\Theta^\theta \psi)_{ij} = D_{ij, (ig^{-1})j} \psi_{(ig^{-1})j}. \]

Die obige Bedingung für Bikovarianz übersetzt sich dann in entsprechende Bedingungen für den Dirac-Operator und damit natürlich auch den Hilbertraum und \(\gamma \):
Wenn die Darstellung eines \(\Theta^\theta \) verschwindet, so müssen für alle \(k, l \in G \) die Komponenten \(D_{kl, (kg^{-1})l} = (D_{(kg^{-1})l, kl})^* \) verschwinden. Ist \(\Theta^\theta \) hingegen von Null verschieden, so muss für jedes \(k \in G \) wenigstens ein \(l \in G \) existieren, so dass \(D_{kl, (kg^{-1})l} \neq 0 \) ist.

Die Forderung nach der Bikovarianz des Differentialkalküls liefert offenbar schon eine spürbare Einschränkung an spektrale Tripel. Andererseits macht sie als Symmetriebegriff natürlich nicht sehr viel her, vor allem weil damit noch nicht sichergestellt ist, dass man eine Darstellung der Links-(Rechts-)Wirkung der Gruppe auf sich selbst auch auf dem Hilbertraum kovariant dargestellt hat. Analog zur Kovarianz der Differential-Algebra ist auch hier die Äquivalenz einer solchen kovarianten Darstellung der Gruppe zur Existenz einer Kovarianz der Algebra auf \(\mathcal{H} \) sicher zu stellen.

Ist eine kovariante Darstellung der Algebra gegeben, so wird man nach einem invarianten Dirac-Operator und der daraus abgeleiteten invarianten Metrik suchen. Darüber hinaus erscheint es natürlich, zusätzlich die Existenz einer kovarianten Darstellung der Gruppenwirkung für \(A^\theta \) zu fordern. Wünschenswert ist auch die Existenz einer Darstellung der Rechtswirkung der Gruppe auf sich selbst. Dies ist, wie später gezeigt werden wird, äquivalent zu einer Darstellung der Antipode von \(A = C(G) \) (in Verbindung mit der Darstellung der Linkswirkung). Kurz gesagt: Man wird ein \(G \)-symmetrisches spektrales Tripel für \(C(G) \) konstruieren.

Die Darstellung der Algebra \(C(G) \) auf dem Hilbertraum \(\mathcal{H} = \bigoplus_{k,l \in G} \mathcal{H}_{kl} \) ist durch
\[e_g \psi_{kl} = \delta_{g,k} \psi_{kl} \quad \forall g, k, l \in G \]
festgelegt. Eine unitäre Darstellung der Gruppe \(G \) auf \(\mathcal{H} \), bezüglich der diese Darstellung von \(C(G) \) kovariant ist, muss also offenbar der Gleichung
\[g \psi_{kl} \in \mathcal{H}_{(g^{-1}k)l} \]
genügen, denn dann ist
\[(ge_h g^*) \psi_{kl} = ge_h \psi_{(g)l} = \delta_{k,h} g \psi_{(k)l} = \delta_{k,g^{-1}h} \psi_{kl} = e_{g^{-1}h} \psi_{kl}. \]
Soll auch die Darstellung der Algebra \(C(G) \) von rechts kovariant unter dieser Darstellung der Gruppe sein, so folgt
\[g \psi_{kl} \in \mathcal{H}_{(g^{-1}k)l(g^{-1}l)}. \]
was zum Beispiel dann erfüllt ist, wenn die Darstellung der Gruppe mit der Realitätsstruktur J kommutiert. Insbesondere müssen also für alle $g \in G$ die Räume $\mathcal{H}_{(g^{-1}k)}$ die gleiche Dimension $|q_{kl}|$ haben. Auf dem Raum $\mathbb{C}[\mathfrak{h}]$ existiert ebenfalls eine Darstellung r der Gruppe G, zumeist – aber nicht immer – nur die triviale, $r(g) = 1\quad \forall g \in G$. Die Darstellung der Gruppe wird daher in der Folge als

$$(g\psi)_kl = r(g)\psi_{(gkl)(g)}$$

abgekürzt. Sie kommutiert dann und nur dann für alle $g \in G$ mit der Realitätsstruktur J, wenn die Darstellung $r(g)$ reell ist, also

$${\overline{r(g)}} = r(g).$$

Das folgende Lemma zeigt unter welchen Umständen der resultierende Differentialkalkül links covariant sein wird, in dem Sinne, dass auf \mathcal{H} die Gleichung

$$g(a[D,b])g^* = (gag^*)[D,(gbg^*)] \quad \forall a, b \in C(G), \quad g \in G$$

gilt.

Lemma 7.1.6. Die Darstellung der Gruppe G auf \mathcal{H} induziert eine Linkswirkung von G auf $\Omega_D^1(C(G))$, welche mit dem Differential vertauscht, wenn und nur wenn für alle $g \in G$ der Operator $g^*[D,g]$ im Kommutant der Algebra liegt.

Beweis:

Sei für alle $b \in C(G)$

$$g([D,b])g^* = [D,(gbg^*)].$$

Verwendet man auf der rechten Seite die Leibniz-Regel $[D,AB] = A[D,B]+[D,A]B$ so ergibt sich daraus

$$0 = gb[D,g^*] + [D,g]bg^*,$$

und mit der bekannten Identität $[D,g^*] = -g^*[D,g]g^*$ folgt sofort die Behauptung

$$bg^*[D,g] = g^*[D,g]b \quad \forall b \in C(G), \quad g \in G. \quad (7.3)$$

Auf den ersten Blick sieht diese Gleichung etwas allgemeiner als die Forderung der Invarianz $[D,g] = 0$ des Dirac-Operators aus. Dem ist (mit wenigen Ausnahmen) aber nicht so: Die Antipode der Gruppenalgebra $\mathbb{C}G$ (die hier als Symmetrie-Algebra verwendet wird), ist durch $s(g) = g^{-1}$ auf den Gruppenelementen gegeben. Die Kovarianz-Forderung für die Realitätstruktur lautet für unitäre Darstellungen der Gruppe also

$$JgJ = (sg)^* = g.$$
Korollar 7.1.7. Wenn die Darstellung der Gruppe mit der Realitätsstruktur J vertauscht, so ist $g^*[D,g]$ im Kommutant der Algebra wenn und nur wenn

$$[D,g] = 0 \quad \forall g \in G$$

ist.

Beweis: Sei $b = \sum_{g \in G} b^g e_g$, $b^g \in \mathbb{C}$. Dann lautet die $(kl) \rightarrow (ij)$-Komponente der Gleichung (7.3) explizit

$$(r(g^*)D_{(g^{-1}i)(g^{-1}j),(g^{-1}k)(g^{-1}l)} r(g) - D_{ij,kl}) b_i = (r(g^*)D_{(g^{-1}i)(g^{-1}j),(g^{-1}k)(g^{-1}l)} r(g) - D_{ij,kl}) b_k$$

Für $i \neq k$ kann das offenbar nur dann für alle b_i, b_k gelten, wenn der Ausdruck

$$(r(g^*)D_{(g^{-1}i)(g^{-1}j),(g^{-1}k)(g^{-1}l)} r(g) - D_{ij,kl}) = (g^*[D,g])_{ik,kl}$$

verschwindet. In diesem Fall ist $j = l$, wenn die entsprechende Komponente von D nicht verschwindet. Multipliziert man diese Gleichung von beiden Seiten mit J so ergibt sich mit der Voraussetzung $J g J = g$ sofort, dass auch die Komponenten mit $i = k$ verschwinden, denn es gilt ja $(J D J)_{ij,kl} = D_{ji,ik}$.

Auch wenn J nicht mit der Darstellung der Gruppe vertauscht und es daher möglich ist, D nicht invariant zu wählen, hat die zusätzliche Freiheit in D keine Bedeutung. Die entsprechenden Komponenten $D_{ij,kj}$ spielen für die Differentialen nämlich keine Rolle, und die Metrik wird deshalb in jedem Fall invariant sein. Es ist deshalb vernünftig, sich ausschließlich auf den Fall eines invarianten Dirac-Operators, der also die Gleichung

$$D_{(g i)(g j),(g k)(g l)} = r(g) D_{ij,kj} r^*(g) \quad \forall g, i, j, k, l \in G$$

erfüllt, zu konzentrieren. Offenbar bedeutet dies einfach, dass alle Komponenten $D_{(g i)(g j),(g k)(g l)}$ durch die Angabe einer Komponente $D_{ij,kj}$ bereits fixiert sind. Insbesondere müssen q und γ so gewählt sein, dass alle diese Komponenten existieren. Ist γ invariant unter der Gruppenwirkung, so ist sichergestellt dass mit $q_{ij} q_{kl} < 0$ auch stets $q_{(g i)(g j)} q_{(g k)(g l)} < 0$ gilt. Es genügt also völlig,

$$g^* g^* = \gamma$$

zu fordern.

Es sei nun ein spektrales Tripel gegeben, das allen obigen Anforderungen genügt. Insbesondere gibt es also eine Darstellung der Links-Wirkung der Gruppe auf sich selbst. Was sind dann die minimalen Voraussetzungen für die Existenz einer Darstellung der Rechts-Wirkung?

Beobachtung 7.1.8. Es ist in $C(G)$:

$$S L_{g^{-1}} S = R_g.$$
Beweis: Für beliebiges \(f \in C(G) \) ist
\[
(SL_{g^{-1}}Sf)(h) = (SL_{g^{-1}}f)(h^{-1})
\]
\[
= Sf(gh^{-1})
\]
\[
= f(hg^{-1})
\]
\[
= R_g f(h)
\]
Folglich braucht man nur eine Darstellung der Antipode \(\psi \) auf \(\mathcal{H} \), zum Beispiel als
\[
(S\psi)_{ij} = \psi_{i-1,j-1}
\]
um die Existenz einer Rechts-Wirkung zu gewährleisten. Es ist dann nämlich die Kovarianz-Bedingung
\[
Se_h S = e_{h^{-1}},
\]
erfüllt, und damit folgt schon, wie im obigen Beweis:
\[
Sg^* e_h Sg S = e_{hg^{-1}}.
\]
Die Rechtswirkung von \(g \in G \) wird also durch \(Sg^* S \) dargestellt. Eine hinreichende Bedingung für die Bikovarianz des Differentialkalküls ist dann
\[
[D, S] = 0.
\]
Das Skalarprodukt \(\langle \cdot, \cdot \rangle \) von Einsformen sollte ebenfalls invariant unter der Gruppenwirkung sein,
\[
\langle g\omega_1 g^*, g\omega_2 g^* \rangle = \langle \omega_1, \omega_2 \rangle.
\]
Für den üblichen Ansatz \(\langle \omega_1, \omega_2 \rangle = \text{Tr}(z\omega_2 \omega_1) \) bedeutet dies, dass \(z \) mit der Darstellung der Gruppe vertauschen sollte.

Zusammengefasst:

Es gibt (fast) keine Schwierigkeiten spektrale Tripel für \(C(G) \) zu finden, welche die Symmetrie unter \(G \) respektieren. Das werden auch die folgenden Beispiele belegen. Da für kovariante Darstellungen
\[
g\mathcal{H}_{ij} = \mathcal{H}_{(g^{-1})}((g^{-1})\mathcal{H}_{i,j})
\]
gilt, und wenn man die Invarianz der Graduierung \(\gamma \),
\[
g\gamma g^* = \gamma,
\]
voraussetzt, so folgt, dass die Schnittform \(q_{ij} \) invariant unter der Gruppenwirkung sein muss, also \(q_{ij} = q_{(g^{-1})i,(g^{-1})j} \), was man etwas eleganter mit den Darstellungsmatrizen \(U(g) \) der regulären Darstellung der Gruppe (auf \(\mathbb{C}^G \)) als
\[
U(g) q (U(g))^* = q
\]
7.1 Endliche Gruppen und ihre bikovarianten Differentialkalküle

schreiben kann. Im Allgemeinen sind die kovarianten Darstellungen der Gruppe sogar orthogonal (die Darstellungsmatrizen sind orthogonal), denn die reguläre Darstellung ist orthogonal und kovariante Darstellungen stammen (wie alle Darstellungen) ja letztlich aus dieser Darstellung.

Interessanterweise folgt dann im Allgemeinen, dass die Realitätsstruktur in varianter unter der Gruppe ist: Wegen

$[g J g^*, \gamma] = g [J, \gamma] g^* = 0$

und

$g J g^* \pi(a) g J g^* = g J \pi^0 (g^{-1}) J g^* = g \pi^0 (g^{-1}) g^* = \pi^0 (a)$

ist $g J g^*$ nämlich ebenfalls eine erlaubte Realitätsstruktur. Da diese aber eindeutig ist, bis auf unitäre Transformationen in den Familienräumen \mathbb{C}^q, folgt (wenn man die Möglichkeit von Darstellungen r_{ij} der Gruppe in den Familienräumen vernachlässigt)

$g J g^* = J$.

Die Invarianz des Dirac-Operators übersetzt sich in

$D_{ij,kj}^\gamma = D_{g^{-1}i, g^{-1}j, g^{-1}k, g^{-1}j}$.

Wenn der Dirac-Operator invariant unter der Gruppenwirkung ist, so trifft dies automatisch auch auf γ und q_{ij} zu, und somit auch auf J.

Ein diskretes spekrales Tripel ist also dann und nur dann G-symmetrisch, wenn der Dirac-Operator mit der (kovarianten) Darstellung der Gruppe auf H kommutiert.

Ein recht überraschendes Ergebnis ist nun, dass die Kovarianzbedingung des Differentialkalküls dann und nur dann auf H dargestellt ist, also

$g a [D, b] g^* = (g a g^*) [D, g b g^*]$

gilt, wenn D invariant unter G ist.

Es muss aber betont werden, dass dies keineswegs bedeutet, dass endlichdimensionale spektrale Tripel nur dann auf kovariante Differentialkalküle führen, wenn D invariant ist. Ein Differentialkalkül ist ja schon dann kovariant, wenn aus $\theta^g = 0$ stets auch $\theta^{h^{-1} g} = 0$ folgt, und dies ist eine wesentlich schwächere Bedingung an den Dirac-Operator.

7.1.1 Zyklsche Gruppen

Die kleinste nichttriviale Gruppe ist die zyklische Gruppe \mathbb{Z}_2, die nur ein nichttriviales Element e mit $e^2 = e$ besitzt. Die Algebra $\mathcal{C}(\mathbb{Z}_2)$ hat dann zwei Erzeuger, e und e_a, die von a vertauscht werden:

$a e = e_a, \quad a e_a = e$.

Die einfachste Schnittform eines \mathbb{Z}_2-symmetrischen spektralen Tripels zu $\mathcal{C}(\mathbb{Z}_2)$, das einen nichtverschwindenden Dirac-Operator besitzt, ist demnach durch

$q = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.
gegeben. Der allgemeine Dirac-Operator zu dieser Schnittform wäre
\[D = \begin{pmatrix}
0 & m_1 & m_2 & 0 \\
\overline{m_1} & 0 & 0 & m_1 \\
\overline{m_2} & 0 & 0 & m_2 \\
0 & \overline{m_1} & \overline{m_2} & 0
\end{pmatrix}. \]

Damit dieser mit der Gruppendarstellung vertauscht, muss aber
\[\overline{m_1} = D_{ee,ea} = D_{aa,ae} = m_2 \]
gelten. Statt zweier freier komplexer Parameter enthielte der Dirac-Operator hier also nur einen einzigen. Für die Metrik findet man
\[d_{1,2} = \frac{1}{|m_1|}, \]
wohingegen die Eigenwerte durch
\[\pm 2 \text{ Re } (m_1) \quad \text{und} \quad \pm 2 \text{ Im } (m_1) \]
gegeben sind. Diese Größen sind also auch im symmetrischen Fall frei wählbar. Das liegt natürlich daran, dass die Gruppe \(\mathbb{Z}_2 \) etwas dürftig ausgefallen ist.
Für die nächstkompliziertere Gruppe, die zyklische Gruppe \(\mathbb{Z}_3 \) zum Beispiel, wäre das einfachste spektrale Tripel durch
\[q = \begin{pmatrix}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{pmatrix}, \]
gegeben. Es gibt also ausschließlich Komponenten \(D_{ijk} \) (und entsprechend \(D_{ikj}, D_{ikj} \)) des Dirac-Operators, wobei für die Invarianz
\[D_{1112} = D_{2223} = D_{3331} \quad \text{und} \quad D_{1113} = D_{2221} = D_{3332} \]
sein muss. Von den ursprünglich 6 freien Parametern in \(D \) bleiben also nur noch zwei übrig.

Ein Beispiel zur Gruppe \(\mathbb{Z}_4 \) befindet sich am Anfang dieses Kapitels.

7.1.2 \(S_3 \)
Die kleinste nichtabelsche Gruppe ist die Permutationsgruppe von drei Elementen, \(S_3 \). Diese Gruppe hat zwei Erzeuger \(a, b \) (und 6 Elemente) mit den Relationen
\[a^2 = e \quad \text{b} \quad b^2 = e, \quad aba = bab \]
Selbstverständlich sind \(a, b \) in der definierenden Darstellung einfach die üblichen Transpositionen
\[a : (123) \mapsto (213), \quad b : (123) \mapsto (132). \]
Es ist aber bequemer mit einem dritten Erzeuger \(c = aba \) \((c^2 = e) \) zu arbeiten, weil die Relationen für \(a, b, c \),

\[
ab = bc, \quad ac = ba, \quad bc = ca,
\]

offenbar etwas handlicher als die obigen sind. Es gibt genau drei irreduzible unitäre Darstellungen der Gruppe \(S_3 \), die in der folgenden Tabelle zusammengestellt sind.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>(\pi(a))</th>
<th>(\pi(b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1^*)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
| 2 | \[
\begin{pmatrix}
1 & 0 & \frac{1}{2} \\
0 & -1 & -\frac{\sqrt{3}}{2}
\end{pmatrix}
\] | \[
\begin{pmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}
\] |

wobei \(1^* \) die triviale Darstellung bezeichnet. Es gibt dann drei Konjugationsklassen, nämlich

\[
\{e\}, \quad \{a, b, c\} \quad \text{und} \quad \{ab, ba\}
\]

wodurch die bikovarianten Differentialkalküle auch schon angegeben wären. Die Schnittform \(q \) ist genau dann invariant unter \(S_3 \), wenn sie den Bedingungen

\[
q_{ab} = q_{(ab)e} = q_{e(bo)} = q_{bc} = q_{(bo)(ab)} = q_{ca}
\]

(und analog für andere Elemente) genügt. Das einfachste \(S_3 \)-symmetrische spektrale Tripel zu \(C(S_3) \) ist dann 18-dimensional, mit

\[
q = \begin{pmatrix}
1 & 0 & 0 & -1 & -1 & 0 \\
0 & 1 & -1 & 0 & 0 & -1 \\
0 & -1 & 1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 1 & -1 & 0 \\
-1 & 0 & 0 & -1 & 1 & 0 \\
0 & -1 & -1 & 0 & 0 & 1
\end{pmatrix}
\]

Der Dirac-Operator enthält in diesem Fall nur einen einzigen freien Parameter obwohl er ohne die Symmetrie bis zu 6 unabhängige Eigenwerte haben könnte. Wie man sieht, werden solche Beispiele sehr schnell kompliziert, und das Berechnen der Eigenwerte von \(D \) ist schon in diesem Fall nur noch mit Computer-Algebra-Systemen zu bewältigen. Ob das der Mühe wert ist, ist allerdings fraglich. Zumindest die Metrik ist in diesen Beispielen ohnehin von vorneherein klar: Da sie invariant unter der Gruppe ist, haben alle 6 Punkte den gleichen Abstand \(\frac{1}{\|D\|} \).

7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

... so ist dem ko- überhaupt keine grenze gesetzt
und auch nicht den waffensystemen
die ein solches ko- erst ermöglichen
sondern bloß der existenz
die jeweils nur ein einziges mal vorkommt
und daher auch so belanglos ist

Ernst Jandl

Die Konzepte aus dem vorigen Unterabschnitt lassen sich ohne Schwierigkeiten auf beliebige, also auch nichtkommutative, endlichdimensionale Hopf-Algebren verallgemeinern. Eine wichtige Rolle spielt dabei der folgende Satz.

Sei H eine endlichdimensionale Hopf-Algebra, H^* die zu H duale Hopf-Algebra. Die Elemente einer Basis in H seien mit e_i bezeichnet, die der hierzu dualen Basis in H^* mit e^j

$$\langle e^j, e_i \rangle = \delta^j_i.$$ \hspace{1cm} (7.4)

Die Antipode S von H^* ist dual zur Antipode s von H:

$$\langle Sa, a \rangle = \langle a, sa \rangle.$$ \hspace{1cm} (7.2.1)

Die (Rechts-)Wirkung von H^* auf H wird weiterhin als $\alpha \triangleright a, a \in H, \alpha \in H^*$ geschrieben. Explizit ist

$$\alpha \triangleright a = \langle \alpha a(2) \rangle a(1),$$

mit der üblichen Kurzschreibweise $\Delta a = a(1) \otimes a(2)$. Es gibt noch eine weitere Möglichkeit eine Wirkung von H^* auf H zu definieren. Mit Hilfe der Antipode kann man jede Hopf-Algebra nämlich auch auf dem Dualraum eines Darstellungsraumes darstellen. Hier ergibt sich

$$a \triangleleft \alpha = \langle Sa, a(1) \rangle a(2).$$

Für endlichdimensionale Hopf-Algebren lässt sich diese Beziehung zwischen der Wirkung von H^* und dem Koprodukt von H umkehren:

Satz 7.2.1. Es ist

$$\Delta a = \sum_i (e^i \triangleright a) \otimes e_i = \sum_i e_i \otimes (a \triangleleft (S^{-1} e^i)).$$ \hspace{1cm} (7.4)

Beweis: Da in $H \otimes H$ durch $e_i \otimes e_j$ eine Basis gegeben ist, gibt es Konstanten K_{k}^{ij} mit

$$\Delta e_k = \sum_{i,j} K_{k}^{ij} e_i \otimes e_j.$$
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

Mit diesen kann man dann auch die Wirkung von H^* ausdrücken:

$$ e^i \triangleright e_k = \sum_i K_k^{ij} e_i, \quad e_k \triangleleft e^l = \sum_{i,j} K_k^{ij} (Se^i, e_l) e_j, $$

womit die Behauptung durch Einsetzen verifiziert werden kann.

Es sei noch einmal daran erinnert, dass das Koprodukt von H^* per Definition dual zum Produkt von H ist:

$$ \alpha \triangleright (ab) = (\alpha_{(1)} \triangleright a) (\alpha_{(2)} \triangleright b). $$

Wie zuvor führt man wieder rechtskоварiant Differentialkalküle auf H ein, die eine Rechts-Kowirkung Δ_R von H gestatten, welche mit dem Differential gemäß

$$ \Delta_R(da) = (d \otimes id) \Delta a $$

verträglich sind. Aus (7.4) folgt dann, dass die Existenz einer solchen Kowirkung äquivalent zu der Existenz einer Wirkung von H^* auf die Differential-Algebra ist, welche mit dem Differential vertauscht, also:

$$ \alpha \triangleright (adb) = (\alpha_{(1)} \triangleright a) d (\alpha_{(2)} \triangleright b). $$

Explizit sieht diese Wirkung dann so aus:

$$ \alpha \triangleright (da) = \sum_i (d(e^i \triangleright a)) \otimes e_i, $$

Damit ist eigentlich schon fast alles klar. Zu bemerken ist noch, dass die Wirkung von $\alpha \in H^*$ nur dann ein Automorphismus der Algebra H sein wird, wenn α gruppenartig,

$$ \Delta \alpha = \alpha \otimes \alpha, $$

ist. Demnach induzieren nur gruppenartige Elemente von H^* Diffeomorphismen des Raums der reinen Zustände von H.

Satz 7.2.2. Sei H eine halbeinfache endlichdimensionale Hopf-Algebra, $(\mathcal{H}, H, D, \gamma, J)$ ein – bezüglich beider Wirkungen von H^* auf $H – H^*$-symmetrisches spektrales Tripel.

1. Dann ist \mathcal{H} sowohl ein Rechts- als auch Links-Komodul über H.

2. Der aus den Daten des spektralen Tripels abgeleitete Differentialkalkül für H ist bikovariant.

3. Die aus D abgeleitete Metrik auf dem Raum X der reinen Zustände von H ist invariant unter der Wirkung von gruppenartigen Elementen $\alpha \in H^*$

$$ d(\alpha \zeta_1, \alpha \zeta_2) = d(\zeta_1, \zeta_2) \quad \forall \zeta_1, \zeta_2 \in X. $$
Ein Beweis dürfte sich nach den Ausführungen im letzten Unterabschnitt erübrigen. Man braucht nur in allen dort abgeleiteten Formeln die Rechtswirkung R_g durch die Wirkung $\epsilon^i \triangleright a$ ersetzen. So ist zum Beispiel die Rechts-Kowirkung auf \mathcal{H} durch
\[
\Delta_R \psi = \sum_i \left(\epsilon^i \psi \right) \otimes e_i
\]
gegeben.
Soweit die Theorie.....

Das folgende Beispiel soll die Schwierigkeiten verdeutlichen.

Betrachtet wird das einfachste Beispiel für eine nichtkommutative Hopf-Algebra, die Gruppenalgebren CG (und gelegentlich noch etwas spezieller die zyklischen Gruppen \mathbb{Z}_n, beziehungsweise die Permutationsgruppe \mathbb{S}_n).

Als Vektorraum ist CG der freie Vektorraum über der Menge G. Das Produkt ist durch die Gruppenmultiplikation gegeben, welche mit dem Distributiv-Gesetz auf Linear kombinationen $\sum_g a_g g$ fortgesetzt wird. Betrachtet man eine irreduzible Darstellung der Gruppe G auf C^r (die irreduziblen Darstellungen einer endlichen Gruppe sind natürlich alle endlichdimensional), so spannt die Darstellung von CG wegen des Schurschen Lemmas die ganze Matrix-Algebra $M_r(\mathbb{C})$ der Endomorphismen von C^r auf.

In der Zerlegung $CG = \bigoplus_{j} M_{n_j}(\mathbb{C})$ der halbeinfachen Algebra CG wird folglich ein Summand $M_r(\mathbb{C})$ existieren. Umgekehrt definiert jeder Block $M_{n_j}(\mathbb{C})$ eine irreduzible Darstellung von G.

Satz 7.2.3. Bezeichnet der Index α die inäquivalenten, irreduziblen Darstellungen von G mit den jeweiligen Dimensionen n_α, so ist
\[
CG = \bigoplus_{\alpha} M_{n_\alpha}(\mathbb{C}).
\]

Die natürliche Hopf-Algebra auf Gruppenalgebren ist durch
\[
\Delta g = g \otimes g, \quad \epsilon(g) = 1, \quad Sg = g^{-1}
\]
gegeben. Die duale Hopf-Algebra ist die Algebra $C(G)$ der Funktionen auf G, und diese wirkt als
\[
e_h \triangleright g = \langle e_h, g \rangle g = \delta_{g,h} g
\]
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

auf CG. Sucht man nach kovarianten Darstellungen von CG unter dieser Wirkung, und verwendet man das Koprodukt von $C(G)$, so übersetzt sich die geforderte Kovarianz-Bedingung in:

$$e_h \cdot (g \cdot \psi) = \sum_{k \in G} (e_k \cdot b \cdot g) \cdot (\mathcal{L}_k e_h) \cdot \psi = g \cdot (\mathcal{L}_g e_h) \cdot \psi.$$

Mit anderen Worten: Gesucht ist eine bezüglich G kovariante Darstellung von $C(G)$, denn obige Bedingung kann ja auch als

$$g^* e_h g = (\mathcal{L}_g e_h)$$

interpretiert werden.

Man kann auch viel Allgemeines zu (bikovarianten) Differentialkalkülen auf Gruppenalgebren sagen:

Proposition 7.2.4. Der Differentialkalkül auf Gruppenalgebren ist ein innerer, das heißt es existiert eine Einsform χ mit $dg = [g, \chi]$

Beweis: Betrachte:

$$\chi = \frac{1}{|G|} \sum_{h \in G} h^{-1} dh.$$

Dann ist:

$$[g, \chi] = \frac{1}{|G|} \sum_{h \in G} (gh^{-1} \cdot dh - h^{-1} \cdot dh \cdot g)$$

$$= \frac{1}{|G|} \sum_{h \in G} (gh^{-1} \cdot dh - h^{-1} \cdot d(hg) + dg)$$

$$= \frac{1}{|G|} \sum_{h \in G} dg$$

$$= dg \quad \blacksquare$$

wobei für den vorletzten Schritt die Summationsvariable der mittleren Summe von h nach $h' = hg$ verschoben wurde.

Die zugrunde liegende Gruppenstruktur spiegelt sich in entsprechenden Eigenschaften von χ wieder.

Proposition 7.2.5.

$$\sum_{g \in G} g \chi g^{-1} = 0.$$
Beweis: Betrachte:

\[-|G|\chi = \sum_{h \in G} -h^{-1} \text{d}h = \sum_{g \in G} -g \text{d}(g^{-1}) = \sum_{g \in G} \text{d}(g) g^{-1} = \sum_{g \in G} [g, \chi] g^{-1}.
\]

Es ist deshalb

\[\sum_{g \in G} g \chi g^{-1} = \sum_{g \in G} (\chi + [g, \chi] g^{-1}) = |G| \chi - |G| \chi = 0.\]

Im Hinblick auf die Frage, ob man solche Differentialkalküle auch mit Hilfe von spektralen Tripeln konstruieren kann, sieht das recht vielversprechend aus. Der aus einem diskreten spektralen Tripel abgeleitete Differentialkalkül ist ja ebenfalls stets ein innerer. Es gilt dann nämlich für alle Algebra-Elemente \(a \in A\)

\[d_a = [\xi, a],\]

wobei die Einsform \(\xi \in \Omega_1(A)\) in diesem Fall als

\[\xi = -\sum_{\alpha \neq \beta} P_\alpha[D, P_\beta]\]

gegeben ist. \(P_\alpha\) bezeichnet dabei den Projektor auf die einfache Unteralgebra \(M_{n_\alpha}(\mathbb{C})\) (im Fall von Gruppenalgebren also auf die irreduzible Darstellung \(\alpha\)).

Es wird gleich für alle spektralen Tripel zu \(\mathbb{C}G\) die Identität \(\xi = -\pi(\chi)\) gezeigt. (Weil der Differentialkalkül von diskreten spektralen Tripeln kein Zentrum hat, muss das so sein. Sonst wäre \(\xi + \pi(\chi)\) eine nichtverschwindende Form im Zentrum). Dazu benötigt man folgenden einfachen Satz aus der Gruppentheorie:

Satz 7.2.6. Sei \(G\) eine endliche Gruppe,

\[r_1 : G \to \text{End}(V_1) \quad r_2 : G \to \text{End}(V_2)\]

zwei inäquivalente, irreduzible unitäre Darstellungen von \(G\) auf Vektorräumen \(V_1, V_2\). Des Weiteren sei \(S \in \text{Hom}(V_1, V_2)\) eine beliebige lineare Abbildung von \(V_1\) nach \(V_2\). Dann ist

\[\text{Hom}(V_1, V_2) \ni \langle S \rangle = \sum_{g \in G} r_2(g) S (r_1(g))^* = 0 (7.5)\]

Beweis: Offensichtlich ist \(\langle S \rangle\) ein Intertwiner der Darstellungen \(r_1, r_2,\)

\[r_2(h)\langle S \rangle = \langle S \rangle r_1(h) \quad \forall h \in G.\]

Da diese Darstellungen nach Voraussetzung inäquivalent sind, folgt – mit dem Schurschen Lemma – sofort die Behauptung.
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

Korollar 7.2.7. Mit den obigen Definitionen ist.

\[\sum_{g \in G} \pi(g) \pi(g)^* \equiv 0. \]

Beweis: Gemäß der Klassifikation diskreter spektraler Tripel hat \(\xi \) ausschließlich Komponenten \(\xi_{\alpha \delta, 3} \) mit \(\alpha \neq \beta \). \(\xi \) bildet also inäquivalente Darstellungen von \(G \) aufeinander ab, und aus obigem Satz folgt dann die Behauptung.

Korollar 7.2.8. Es ist für alle diskreten spektralen Tripel zu \(\mathbb{C} G \):

\[\pi(\chi) = -\xi. \]

Beweis:

\[
\begin{align*}
\pi(\chi) &= \frac{1}{|G|} \sum_{g \in G} g^{-1} [\xi, g] \\
&= \frac{1}{|G|} \sum_{g \in G} g^{-1} \xi g - \xi \\
&= -\xi
\end{align*}
\]

wie oben angedeutet wurde, zeigt das eigentlich nur die Konsistenz der bisher erarbeiteten Zwischenresultate. Aber auch das ist manchmal wichtig, und hier hoffentlich auch schön anzusehen.

Existiert auf dem Differentialkalkül eine mit dem Differential vertauschende Kowirkung \(\Delta_R \) der Algebra – links und rechts können hier nicht richtig verwechselt werden, weil die Algebra sowieso kokommutativ ist – so ist \(\chi \) unter dieser Kowirkung invariant:

\[\Delta_R \chi = - \frac{1}{|G|} \sum_{h \in G} (h^{-1} \otimes h^{-1}) (dh \otimes h) = \chi \otimes e. \]

Jede Einsform kann als Linearkombination über \(\mathbb{C} \) von Elementen \(h dg, h, g \in G \) dargestellt werden. Auf diesen Elementen ist

\[\Delta_R (hdg) = (hdg) \otimes hg, \]

und das kann wieder mit der Rechtswirkung der Algebra \(C(G) \) auf \(\mathbb{C} G \) ausgedrückt werden, wenn man

\[e_i \, dg = d(e_i \triangleright g) = \delta_{i,g} \, dg \]

setzt, und diese Definition kovariant unter Verwendung des Koproduktes der \(e_i \)

\[e_i (hdg) = \sum_{k \in G} (e_k \triangleright h)(e_{k-1}, i, dg) = \delta_{i,h} (hdg) \]
Symmetrien und Ko-

fortsetzt. Dann ist, wie man leicht nachprüft:

\[\Delta_R(h \mu g) = \sum_{i \in G} (e_i(h \mu g)) \otimes i, \]

auch wenn das an dieser Stelle auf den ersten Blick einem Bombardieren von Ami-

senhügeln gleichkommen mag. Natürlich ist diese Darstellung von \(C(G) \) auf den Eins-

formen auch kovariant bezüglich der Gruppenwirkung von \(G \):

\[(k^{-1} e_i k) h \mu g = \delta_{i,k} h \mu g = e_{k^{-1} i} h \mu g \]

und dies führt auf die einzige Einschränkung an kovariante Differentialkalküle:

Da die Abbildung \(e_i \mapsto (k^{-1} e_i k) = e_{k^{-1} i} \) invertierbar ist, müssen die Unterräume \(e_i \Omega_1(C(G)) \) in einem kovarianten Differentialkalkül dieselbe Dimension für alle \(i \in G \) haben. Weil diese Räume aber von Elementen der Form \(ig^{-1} dg, \ g \in G \) aufgespannt werden, also aus dem von den \(g^{-1} dg \) aufgespannten Raum durch Multiplizieren mit dem Gruppenelement \(i \) hervorgehen, ist diese Eigenschaft von selbst erfüllt, solange

keine Relationen existieren, die aus dem von den “Maurer-Cartan”-Formen \(g^{-1} dg \) aufgespannten Raum herausführen. Aus

\[\sum_\alpha z_\alpha h_\alpha g_\alpha = 0 \quad \quad z_\alpha \in \mathbb{C}, \quad h_\alpha, g_\alpha \in G \]

muss ja für alle \(i \in G \) stets

\[e_i \left(\sum_\alpha z_\alpha h_\alpha g_\alpha \right) = 0 \]

folgen.

Lemma 7.2.9. Ein Differentialkalkül über \(C(G) \) ist genau dann kovariant, wenn alle

nichttrivialen Relationen in der Form

\[\sum_{g \in G} z_g g^{-1} dg = 0 \]

geschrieben werden können.

Da \(C(G) \) kommutativ ist (beziehungsweise \(C(G) \) kommutativ), ist jeder rechts-

kovariante Differentialkalkül automatisch auch bikovariant. Es bleibt also nur noch die

Aufgabe, die möglichen Differentialkalküle zu klassifizieren. Man kann ja auch hier

(wegen der Leibniz-Regel), vom universellen Kalkül ausgehend, nicht nach Belieben

Elemente \(g^{-1} dg \) (oder Linearformen davon) Null setzen. Zum Beispiel müssen

die \(g \in G \) mit \(g^{-1} dg = 0 \) eine Untergruppe bilden.

Um nun alle mit der Leibniz-Regel verträglichen Relationen (modulo Algebra-Automorphismen)

to klassifizieren, kann man sich aber wieder der Gruppenstruktur bedienen.

Die Multiplikation von Einsformen mit Gruppen-Elementen (und somit beliebigen

Algebra-Elementen) von links und von rechts kann ja jeweils als Darstellung der Grup-

pe interpretiert werden. Für die Multiplikation von links gilt

\[k(h \mu g) = (kh) \mu dg. \]
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

Die Darstellung von Rechts ist hingegen mit Hilfe der Leibniz-Regel definiert:

\[(h dg)k = h dg(k) - h g dk.\]

Es ist nun zweckmässig die Abkürzung \(v_g = g^{-1} dg\) einzuführen. Jede nichttriviale Relation in einem bikovarianten Differentialkalkül lässt sich dann als lineare Gleichung (mit komplexen Koeffizienten) für die Formen \(v_g\) schreiben, und genau diese gilt es zu untersuchen.

Es ist

\[v_g k = k(v_gk - v_k),\]

und da in dieser Gleichung immer noch die Links-Darstellung der Gruppe auf \(\Omega^1\) benötigt wird, ist es offenbar sinnvoll zur adjungierten Darstellung

\[v_g R(k) \overset{\text{def}}{=} k^{-1} v_g k = v_g k - v_k \quad (7.6)\]

überzugehen. Diese Definitionsgleichung für \(R(k)\) kann man auch so lesen: Offenbar beschreibt sie eine (Rechts-)Darstellung der Gruppe auf einem abstrakten Vektorraum, der Vektoren \(v_g\) enthält. Allerdings ist diese Darstellung damit noch nicht vollständig definiert, denn die \(v_g\) müssen ja nicht linear unabhängig sein, und es kann verschiedene Darstellungen geben, die solche Vektoren (mit verschiedenen Relationen untereinander) enthalten. Jede solche Darstellung, zusammen mit den linearen Relationen der \(v_g\), definiert dann aber einen bikovarianten Differentialkalkül, denn die einzige Einschränkung daran, die Leibniz-Regel, ist äquivalent zu der Aussage, dass eine solche Darstellung \(R(g)\) existiert. Es bleibt also nur noch die Frage zu klären, ob es überhaupt solche Darstellungen gibt, und natürlich, wie man sie finden kann.

Die Gleichung (7.6) ist aber wohlbekannt aus der Gruppen-Kohomologie. Sie besagt einfach, dass die Abbildung \(v : g \mapsto v_g\) ein Gruppen-Kozykel

\[v \in \tilde{Z}^1(G, CG)\]

ist. Für einen beliebigen Rechts-Modul \(M\) über \(G\) sind Elemente \(\tilde{c} \in \tilde{Z}^1(G, M)\) nämlich per Definition Abbildungen von \(G\) nach \(M\) mit der Eigenschaft

\[0 = d\tilde{c}(g, k) = \tilde{c}(g).k - \tilde{c}(g k) + \tilde{c}(k)\]

wobei \(\tilde{c}(g).k\) die Wirkung von \(k \in G\) auf \(\tilde{c}(g) \in M\) bezeichnet. (Insbesondere ist dann \(\tilde{c}(\epsilon) = 0\).) Der interessierte Leser sei an [M.Debert] für die genaue Definition und Hintergründe verwiesen. Da jeder irreduzible Modul über \(G\) in \(CG\) enthalten ist, genügt es hier mit \(\tilde{Z}^1(G, CG)\) zu argumentieren. Der universelle Kalkül entspricht dann demjenigen Kozykel (mit Werten in \(G\)) bei dem alle \(c(g)\) für \(g \neq \epsilon\) linear unabhängig sind.

Als Ergebnis kann also festgehalten werden:

\textbf{Satz 7.2.10.} Bikovariante Differentialkalküle für \(CG\) stehen in 1:1-Korrespondenz zu Eins-Kozykeln \(v \in \tilde{Z}^1(G, CG)\).
Diese Klassifikation der bikovarianten Differentialalkalküle für Gruppenalgebren ist ein neues und sicher interessantes Ergebnis. Zur Beantwortung der Frage, ob es $C(G)$-symmetrische spektrale Tripel für $\mathbb{C}G$ gibt, erweist sie sich in Beispielen als recht hilfreich.

Es sei nun also ein solches $C(G)$-symmetrisches spektrales Tripel für $\mathbb{C}G$ gesucht. Da sich die Algebra $\mathbb{C}G$ als Summe von Matrix-Algebren schreiben lässt, wobei jeder Matrixblock einer irreduziblen Darstellung α von G entspricht, und weil für die Konstruktion des spektralen Tripels die Projektoren P_α auf diese Matrixblöcke (und keineswegs die Gruppen-Elemente) die entscheidende Rolle spielen, muss als Erstes geklärt werden, wie die Symmetrien e_g auf die Projektoren $P_\alpha \in \mathbb{C}G$ wirken.

Proposition 7.2.11. Sei

$$\mathbb{C}G = \bigoplus_{\alpha} M_{n_\alpha} (\mathbb{C})$$

und seien P_α die Projektoren auf die einfachen Unteralgebren $M_{n_\alpha} (\mathbb{C})$. Ist P ein Projektor in $\mathbb{C}G$, so dass für alle $\alpha \in \mathbb{C}G$ und alle $e_h \in C(G)$

$$e_h \triangleright (P \alpha) = P (e_h \triangleright \alpha)$$

gilt, so folgt

$$P = e.$$

Insbesondere ist $e = \sum \alpha P_\alpha$ die einzige Linearkombination der Projektoren P_α, die mit allen Symmetrien vertauscht.

Beweis: Es sei

$$P = \sum_{g \in G} p_g g.$$

Dann ist zum einen für $h, k \in G$

$$P (e_h \triangleright k) = \delta_{h,k} \sum_{g \in G} p_g (gh)$$

und andererseits ist

$$e_h \triangleright (P k) = \delta_{h,gk} p_y h.$$

Man sieht nun leicht ein, dass diese beide Ausdrücke nur dann für alle $k, h \in G$ übereinstimmen, wenn $p_g = 0$ für alle $g \neq e$ ist. Damit trotzdem $P^2 = P$ ist, muss dann natürlich auch $p_e = 1$ gelten (oder es ist $P = 0$).

Diese Proposition deutet schon an, warum es so schwierig ist, allgemeine Aussagen über $C(G)$-invariante spektrale Tripel zu $\mathbb{C}G$ zu finden. Das Bild eines Blocks M_{n_α} unter den Transformationen e_g liegt nämlich immer in allen Blöcken M_{n_β} von $\mathbb{C}G$.

Allerdings bezieht sich die obige Aussage nur auf $\mathbb{C}G (= A)$. Für die Konstruktion spektraler Tripel benötigt man aber die Wirkung von $C(G)$ auf die Algebra $A \otimes A^0$, und hierfür gibt es keine analoge Aussage.
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

Wie für jede Algebra, auf die eine Hopf-Algebra wirkt, kann man auch hier eine Wirkung von $C(G)$ auf $(\mathbb{C}G)\alpha$ mit Hilfe der Antipode von $C(G)$ definieren. Es ist dann für alle $f \in \mathbb{C}G$:

$$e_g \triangleright f^\alpha = (S(e_g) \triangleright f)^\alpha = (e_{g^{-1}} \triangleright f)^\alpha,$$

und, wie man leicht nachprüft, $(\mathbb{C}G)\alpha$ ist mit dieser Wirkung natürlich eine $C(G)$-Modul-Algebra

$$e_k \triangleright (h^\alpha g^\alpha) = \sum_{i \in G} (e_i \triangleright h^\alpha) \cdot (e_{i^{-1}k} \triangleright g^\alpha).$$

Das ist ja auch der Hintergrund der Kovarianz-Bedingung

$$Je_g J = (S(e_g))^\ast = (e_{g^{-1}})^\ast = e_{g^{-1}}$$

für die Realitätsstruktur. Wenn der Hilbertraum \mathcal{H} des spektralen Tripels eine bezüglich der Wirkung von $C(G)$ Kovariante Darstellung von $\mathbb{C}G \otimes (\mathbb{C}G)^\alpha$ trägt, so ist diese Bedingung an J von selbst erfüllt (und umgekehrt). Weil viele solche kovarianten Darstellungen existieren, zum Beispiel auf

$$\mathcal{H} = \mathbb{C}G \otimes (\mathbb{C}G)^\alpha \quad \text{oder} \quad \mathcal{H} = \bigoplus_{\alpha, \beta} \mathbb{C}^{n, \alpha} \otimes \mathbb{C}^{n, \beta},$$

gibt es reichlich Hilberträume, die als Kandidaten für $C(G)$-symmetrische spektrale Tripel in Frage kommen. Weniger klar ist, ob (überhaupt) auf einigen dieser Hilberträume invariante Graduierungen γ und, vor allem, invariante Dirac-Operatoren D existieren.

Diese Fragen konnten wir bisher nur in Beispielen beantworten.

7.2.1 Das Beispiel $\mathbb{C}Z_n$

Wenn die Gruppe G abelsch ist, so ist die kommutative Hopf-Algebra $C(G)$ kommutativ. Dann ist $C(G)$ also als Hopf-Algebra isomorph zur Gruppenalgebra einer abelschen Gruppe (G selbst). Man würde daher erwarten, dass für abelsche Gruppen G keine allzu großen Schwierigkeiten bei der Konstruktion von $C(G)$-symmetrischen spektralen Tripeln auftreten. (Das heißt aber nicht, dass es keinen Unterschied zwischen CG-Symmetrie und $C(G)$-Symmetrie gibt.)

Tatsächlich kann man für die zyklischen Gruppen \mathbb{Z}_n recht leicht nichttriviale $C(\mathbb{Z}_n)$-symmetrische spektrale Tripel konstruieren.

Die Verknüpfung der abelschen Gruppen \mathbb{Z}_n sei in der Folge additiv geschrieben. Dann ist $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$, und $i + j$ wird stets als

$$i + j \equiv i + j \mod n$$

aufgefasst. Die n inäquivalenten irreduziblen Darstellungen π_k von \mathbb{Z}_n sind dann alle eindimensional, mit

$$\pi_k(i) = q^{ik} \quad i \in \mathbb{Z}_n \quad k \in \{0, 1, \ldots, n-1\},$$

wobei q eine nichttriviale n-te Wurzel von Eins ist, $q^n = 1$.

Natürlich ist \(\mathbb{C} \times_n = \mathbb{C}^n \), die Algebra der diagonalen \((n \times n)\)-Matrizen, und die Einbettung \(M \) der Gruppen-Elemente \(i \) in die Algebra \(\mathbb{C}^n \) kann mit Hilfe der irreduziblen Darstellungen explizit als

\[
M(i) = \begin{pmatrix}
1 \\
q^i \\
\vdots \\
q^{(n-1)i}
\end{pmatrix}
\]

angegeben werden. Jedes Element \(a \in \mathbb{C} \times_n \) kann dann als Linearkombination der \(M(i) \) geschrieben werden:

\[
a = \begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{pmatrix} = \frac{1}{n} \sum_{i=0}^{n-1} \left(\sum_{k=0}^{n-1} a_k q^{-ik} \right) M(i).
\]

Die Hopf-Algebra \(C(G) \) wirkt demzufolge gemäß

\[
e_i \triangleright a^0 = \frac{1}{n} \sum_{k=0}^{n-1} a_k q^{ik} M(i)
\]

auf Elemente von \(\mathbb{C} \times_n \), und gemäß

\[
e_i \triangleright a^0 = \frac{1}{n} \sum_{k=0}^{n-1} a_k q^{ik} M(i)
\]

auf Elemente von \((\mathbb{C} \times_n)^0\). Damit lässt sich auch die Wirkung auf die, für die Konstruktion von spektralen Tripeln relevanten, Projektoren

\[
P_i \otimes P_j^0 \in \mathbb{C} \times_n \otimes (\mathbb{C} \times_n)^0
\]

berechnen. Wie sich gleich zeigen wird, ist es durchaus sinnvoll den gleichen Index \(i \), der die Gruppenelemente bezeichnet, auch für die Projektoren

\[
P_i = \text{diag} (0, 0, \ldots, 0, 1, 0 \ldots, 0),
\]

mit der Konvention \(i \equiv i \mod n \) zu verwenden. Man findet nämlich nach kurzer Rechnung

\[
e_i \triangleright (P_k \otimes P_i^0) = \frac{1}{n} \sum_{s=0}^{n-1} q^{i(s-1)} (P_{k-\ell+s} \otimes P_s^0).
\]

Nach diesen Vorbereitungen kann nun endlich zur Tat – der Konstruktion \(C(\mathbb{Z}_n) \)-symmetrischer spektraler Tripel – geschritten werden.
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

Um die Diskussion der vielen kovarianten Darstellungen nicht ausufern zu lassen, wird nur der Fall

\[\mathcal{H} = \mathbb{C}^n \otimes \mathbb{C}^n = \mathbb{C} \mathbb{Z}_n \otimes (\mathbb{C} \mathbb{Z}_n)^{\mathbb{Z}_n} \]

also \(|q_{ij}| = 1 \) für alle \(i, j \), betrachtet. Dann erfüllt die Realitätsstruktur \(J \) automatisch die Kovarianzbedingung

\[J e_i J = e_{-i}. \]

In einer kovarianten Darstellung gilt, wie aus der obigen Rechnung folgt, stets

\[e_i \mathcal{H}_{kl} \subset \bigoplus_s \mathcal{H}_{(k-l+s)s} = \bigoplus_t \mathcal{H}_{(k+t)+(l+t)}. \]

Fasst man die Abbildung \(P_k P_0 \rightarrow P_{k+t} P_0 \) für \(t \in \{0, \ldots, n-1\} \) als eine (zusätzliche) Darstellung der Gruppe \(\mathbb{Z}_n \) auf, so ist das Bild eines Unterraumes \(\mathcal{H}_{kl} \) unter der Wirkung eines \(e_i \) stets ein Unterraum des gesamten Orbits von \(\mathcal{H}_{kb} \) unter dieser Darstellung.

Die Graduierung \(\gamma \) wird also dann und nur dann mit den \(e_i \) vertauschen, wenn

\[\gamma_{ij} = \gamma_{(i+s)(j+s)} \quad \forall s \in \{0, \ldots, n-1\} \]

ist.

Die Symmetrie-Bedingung an den Dirac-Operator ergibt sich aus der folgenden Rechnung mit \(\psi_{kl} \in \mathcal{H}_{kl} \):

\[D e_i \psi_{kl} = \frac{1}{n} \sum_{r,s,t} q^{(s-t)} D_{rt,(k-l+s)s} \psi_{rt} \]

beziehungsweise

\[e_i D \psi_{kl} = \frac{1}{n} \sum_{r,s,t} q^{(s-t)} D_{rt,kl} \psi_{(r-t+s)s}. \]

Das führt auf die Gleichung

\[\sum_s q^{il-s} D_{(k-l+s)s,rt} = \sum_s q^{is-t} D_{kl,(r-t+s)s} \]

mit der Lösung

\[D_{(k+s)(l+s),rt} = \left(D_{rt,(k+s)(l+s)} \right)^* = D_{kl,rt} \quad \forall k, l, r, s, t. \quad (7.7) \]

Jeder Dirac-Operator, welcher der Bedingung (7.7) genügt, kommutiert also mit der Darstellung von \(C(\mathbb{Z}_n) \) auf \(\mathcal{H} \). Wegen der Kovarianz-Bedingungen an \(J \) und \(\gamma \) ist es natürlich auch möglich diese Bedingung an \(D \) zu erfüllen. Zum Beispiel folgt aus \(\gamma_{rl} \gamma_{kl} = -1 \) stets \(\gamma_{rl} \gamma_{(k+s)(l+s)} = -1 \), und für kovariante Darstellungen ist entweder keiner der Räume \(\mathcal{H}_{(k+s)(l+s)} \) leer, oder alle diese Räume sind leer.

Betrachtet man die Gruppe \(\mathbb{Z}_2 \) und (mal wieder) die Schnittform

\[q = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \]
so wäre der allgemeinste Dirac-Operator durch zwei komplexe Zahlen \(D_{0,0} \) und \(D_{1,1} \) bestimmt. Die Invarianz von \(D \) erfordert aber \(D_{0,0} = D_{1,1} \), und unter dieser Voraussetzung ist dieses spektrale Tripel zu \(\mathbb{C} \mathbb{Z}_2 \) dann \(C(G) \)-symmetrisch. Es ist im übrigen keine Besonderheit von \(\mathbb{C} \), dass es keinen Unterschied zwischen diesem \(C(\mathbb{Z}_2) \)-symmetrischen Beispiel und dem im vorigen Abschnitt konstruierten \(\mathbb{C} \mathbb{Z}_2 \)-symmetrischen Beispiel gibt. Die Kovarianz-Bedingung (7.7) stimmt zwar nicht mit der Bedingung \(D_{(i+s)(j+s),(k+s)(l+s)} = D_{ij,kl} \) für \(\mathbb{C} \mathbb{Z}_n \)-invariante Dirac-Operatoren überein, sie ist aber einfach nur etwas stärker. Jedes \(C(\mathbb{Z}_n) \)-symmetrische spektrale Tripel kann daher auch als \(\mathbb{C} \mathbb{Z}_n \)-symmetrisches aufgefasst werden.

7.2.2 Das Beispiel \(\mathbb{C} \mathbb{S}_3 \)

Die Algebra \(\mathbb{C} \mathbb{S}_3 \) ist isomorph zu \(M_2(\mathbb{C}) \oplus \mathbb{C} \oplus \mathbb{C} \). Mit Hilfe der im Abschnitt 7.1.2. angegebenen irreduziblen Darstellungen von \(S_3 \), und den beiden Generatoren \(a, b \) \((a^2 = b^2 = e)\) ist dieser Isomorphismus explizit als

\[
i(a) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad i(b) = \begin{pmatrix} \frac{-1}{\sqrt{2}} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{\sqrt{2}} \end{pmatrix}
\]

geschieden.

Für die Konstruktion von spektralen Tripeln, und besonders für die spätere Argumentation, braucht man noch die Projektoren auf die Matrixblöcke von \(\mathbb{C} \mathbb{S}_3 \). Der Projektor auf die triviale Darstellung \(1^* \) ist schnell gefunden. Für alle nichttrivialen irreduziblen Darstellungen \(\pi \) einer endlichen Gruppe gilt nämlich \(\sum_{g \in G} \pi(g) = 0 \). (Das folgt zum Beispiel aus Satz 7.2.6.) Der Projektor \(P_{1^*} \) ist deshalb:

\[
P_{1^*} = \frac{1}{6}(e + a + b + ab + ba + bab).
\]

Die Berechnung des Projektors auf \(P_1 \) auf die nichttriviale eindimensionale Darstellung erfordert schon etwas mehr Mühe, man findet:

\[
P_1 = \frac{1}{6}(e - a - b + ab + ba - c).
\]

Der noch fehlende Projektor \(P_2 \) (auf die zweidimensionale) ergibt sich dann sofort zu

\[
P_2 = \frac{1}{3}(2e - ab - ba).
\]

Um nun entscheiden zu können, ob \(C(\mathbb{S}_3) \)-symmetrische spektrale Tripel existieren, empfiehlt sich ein kleiner Umweg. Wenn ein solches spektrales Tripel zur Algebra \(\mathbb{C} \mathbb{S}_3 \) nämlich existierte, so wäre der mit Hilfe des Dirac-Operators konstruierte Differentialalkalkül bikovariant. In der Folge werden nun alle bikovarianten Differentialalkalküle über \(\mathbb{C} \mathbb{S}_3 \) untersucht, und es wird gezeigt, dass keiner dieser Differentialalkalküle mit Hilfe eines spektralen Tripels konstruiert werden kann. Es folgt dann:

Lemma 7.2.12. Es gibt keine \(C(\mathbb{S}_3) \)-symmetrischen spektralen Tripel zu \(\mathbb{C} \mathbb{S}_3 \).
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

Bikovariante Differentialalküle zu Gruppenalgebren sind durch diejenigen Darstellungen klassifiziert, welche man mit Hilfe eines Gruppen-Kozykels konstruieren kann. Im Fall der Gruppe S_3 trifft dies auf alle (drei) irreduziblen Darstellungen zu, und diese drei Darstellungen werden nun (eine nach der anderen) ins Rennen geschickt.

Die nichttriviale eindimensionale Darstellung

Für die eindimensionale Darstellung existiert nur eine unabhängige Form χ (das heißt alle v_g sind linear abhängig) und die Bimodul-Regeln folgen sofort aus den Eigenschaften dieser Darstellung. Die Wahl des Buchstaben χ ist kein Zufall. Der Differentialalkül für Gruppenalgebren ist ja ein innerer, und für alle $a \in \mathbb{C}G$ gilt $da = [a, \chi]$ mit

$$\chi = \frac{1}{|G|} \sum_{g \in G} v_g.$$

Für die eindimensionalen Darstellungen kann man statt eines v_g also ebensogut χ verwenden.

Weil in dieser Darstellung $a = b = -1$ gilt, erhält man:

$$a\chi a = -\chi \quad \text{bzw.} \quad b\chi b = -\chi.$$

Das Differential berechnet sich damit zu

$$da = 2a\chi, \quad \quad db = 2b\chi, \quad \quad dc = 2c\chi.$$

Zu bemerken ist auch

$$d(ab) = 0, \quad \quad \text{und} \quad \quad d(ba) = 0.$$

Damit folgt nämlich

$$dP_2 = 0 \quad \quad \text{und somit} \quad \quad dP_1 = -dP_1.$$

Für ein beliebiges Element $a_2 = P_1 a_2$ von $M_2(\mathbb{C})$ ist dann

$$da_2 = P_1 da_2 \quad \quad \Rightarrow \quad \quad P_1 da_2 = P_1 da_2 = 0.$$

Außerdem ist, wie man leicht nachrechnet

$$dP_1 P_1 = P_1 \cdot dP_1, \quad \quad \text{und} \quad \quad dP_1 \cdot P_1 = P_1 \cdot dP_1.$$

Da für jeden Projektor P

$$dP = P \cdot dP + dP \cdot P$$

ist, folgt auch für jedes Element $a_1 \in \mathbb{C} \oplus \mathbb{C} \subset \mathbb{CS}_3$

$$P_2 \cdot da_1 = 0.$$

Die beiden Summanden $\mathbb{C} \oplus \mathbb{C}$ und $M_2(\mathbb{C})$ von \mathbb{CS}_3 bleiben in diesem eindimensionalen Differentialalkül also unter sich:
Lemma 7.2.13. Seien $A = M_2(\mathbb{C})$ und $B = \mathbb{C} \oplus \mathbb{C}$, $\mathbb{C}S_3 = A \oplus B$. Dann setzt sich die kurze exakte Sequenz

$$0 \to A \to \mathbb{C}S_3 \to B \to 0$$

zu einer exakten Sequenz von Differentialalgebren:

$$0 \to \Omega(A) \to \Omega_1(\mathbb{C}S_3) \to \Omega(B) \to 0$$

fort. Hierbei bezeichnet $\Omega_1(\mathbb{C}S_3)$ den oben beschriebenen eindimensionalen Kalkül über $\mathbb{C}S_3$ und $\Omega(A)$, $\Omega(B)$ die Einschränkung dieser Differentialalgebra auf die entsprechenden Unteralgebren.

Diese Differentialalgebra beinhaltet also insbesondere eine nichttriviale Differentialalgebra über $M_2(\mathbb{C})$ als Summanden. Aus diskreten spektralen Tripeln kann man aber unter keinen Umständen eine Differentialalgebra über einer einzelnen Matrix-Algebra ableiten. (Da gehören immer zwei dazu.)

Die triviale Darstellung

Die triviale Darstellung führt hier, wie für jede Gruppe G, nur auf ein triviales Differential. Da der Kalkül nämlich eindimensional ist, gibt es wieder nur die Basis-Form χ. Für die triviale Darstellung muss diese dann aber mit allen Algebra-Elementen vertauschen

$$g\chi g^{-1} = \chi \quad \Rightarrow \quad dg = 0.$$

Die zweidimensionale Darstellung

Der zweidimensionale Kalkül enthält zwei linear unabhängige Basis-Formen χ^1, χ^2 (Linearkombinationen der v_g). Ohne Beweis sei hier angeführt, dass man diese als

$$\chi^1 = a \ da \quad \text{und} \quad \chi^2 = b \ db$$

wählen kann. Man erhält dann die Bimodul-Relationen:

$$a \chi^1 a = -\chi^1, \quad b \chi^2 b = -\chi^2, \quad b \chi^1 b = (\chi^1 - \chi^2), \quad a \chi^2 a = (\chi^2 - \chi^1).$$

(Diese Darstellung ist, wie man leicht zeigt, irreduzibel. Daraus folgt dann sofort die Behauptung, dass dieser Differentialkalkül zu der zweidimensionalen Darstellung korrespondiert.)

Des Weiteren findet man

$$(da)b = c(da) - a(db) \quad \text{und} \quad (db)a = c(db) - b(da)$$

und somit

$$dc = (da)ba + a(da)b + ab(da) = 0.$$

Dieser Differentialkalkül hat ein nichttriviales Zentrum,

$$\omega = (2a - b - c)\chi^2 + (2b - a - c)\chi^1,$$
7.2 Ein paar Bemerkungen zu nichtkommutativen endlichdimensionalen Hopf-Algebren

also \(\omega f = f \omega \) für alle \(f \in \mathbb{CS}_3 \). Weil der aus diskreten spektralen Tripeln abgeleitete Differentialkalkül immer ein triviales Zentrum hat, scheidet also auch dieser Kandidat aus. Alle anderen Darstellungen (und somit auch die zugehörigen bikovarianten Differentialkalküle) können als Summen der irreduziblen Darstellungen zerlegt werden, so dass es keine andere Schlussfolgerung als die oben formulierte geben kann: Es gibt keine \(C(S_3) \)-symmetrischen spektralen Tripel für \(\mathbb{CS}_3 \).

Ob eine analoge Aussage für alle nichtabelschen Gruppen gilt, oder ob es nichtabelsche Gruppen gibt, die \(C(G) \)-symmetrische spektrale Tripel zulassen, bleibt eine offene und interessante Frage.
Teil IV

Ausblick
Kapitel 8

Un´ wozu denn nu´ det janze ?

Ein Forscher ich? Oh spart dies Wort!
Ich bin nur schwer – so manche Pfund! –
Ich falle, falle immerfort
Und endlich auf den Grund!

F. Nietzsche, *Die fröhliche Wissenschaft*

Das Konzept der spektralen Tripel ist sehr gut für die Beschreibung der Gravitation, und insbesondere von spektral invarianten Wirkungen, geeignet. Es fehlen aber ohne Frage weitere nichtkommutative Beispiele (neben den nichtkommutativen Tori und den endlichdimensionalen C^*-Algebren), die man als Spielzeugmodell zur Untersuchung einiger wichtiger Fragen (die teilweise in der Folge angesprochen werden) heranziehen könnte. Wie die vorliegende Arbeit zeigt, können solche Beispiele mit Hilfe von Symmetrien – wenn man sich also auf H-symmetrische spektrale Tripel beschränkt – konstruiert werden. Weitere (spektakuläre) neue Beispiele sind in Arbeit [DPS] [PS-tor].

8.1 Das Spin-Statistik-Theorem aus einem nichtkommutativen Blickwinkel

Die H-symmetrischen spektralen Tripel haben aber selbstverständlich auch direkte physikalische Anwendungen, schließlich sind sie zu eben diesem Zweck entwickelt worden. Erfreulicherweise (und wie so oft) finden sich aber auch sehr interessante, vielversprechende Anwendungen, die zuvor nicht geplant waren. So lassen sich zum Beispiel die hier erarbeiteten Techniken zur Ausarbeitung der Struktur G-homogener Bündel auf das folgende Problem, welches getrost als Klassiker bezeichnet werden kann, anwenden:

Bekanntlich genügen Teilchen mit ganzzahligem Spin $s \in \mathbb{Z}$ der Bose-Einstein-Statistik, während Teilchen mit halbzahligem Spin $s = \frac{2k+1}{2}$, $k \in \mathbb{Z}$ der Fermi-Dirac-Statistik genügen ([P][StW]). Im Rahmen der relativistischen Quantenfeldtheorie kann man diese Aussage als “Spin-Statistik-Theorem” aus der geforderten Kausalität der Theorie schließen. (Der Spin der Teilchen kommt dabei natürlich durch die Darstellung der
Lorentzgruppe ins Spiel.) Die Theorie ist also dann und nur dann kausal, wenn der "physikalisch richtige" Spin-Statistik-Zusammenhang gilt. Führt man für zwei identische Teilchen mit Spin \(s \) die üblichen Schwerpunkts- und Relativkoordinaten \(\vec{R}, \vec{r} \) ein, so gilt für die Gesamtwellenfunktion demnach insbesondere

\[
\Psi(\vec{R}, \vec{r}; m_1, m_2) = (-1)^{2s} \Psi(\vec{R}, -\vec{r}; m_2, m_1).
\]

Hierbei bezeichnet \(m_i \) die jeweilige Spin-Quantenzahl (bezüglich einer festen Quantisierungsrichtung) von Teilchen \(i \). Die obigen "Wellenfunktionen" sind also als Komponenten der Wellenfunktion bezüglich einer gegebenen Spinbasis zu verstehen. (Dieser Umstand wird später wichtig sein.)

Der Austausch der beiden Teilchen kann (zum Beispiel) dadurch realisiert werden, dass man eine Drehung um den Winkel \(\pi \) um den Schwerpunkt der Teilchen ausführt. Die jeweilige Wellenfunktion jedes der beiden Teilchen wird dabei durch die Drehung um einen Phasenfaktor \(e^{i\pi s} \) geändert. Insgesamt ergibt sich also eine Phasenänderung der Gesamtwellenfunktion um \(e^{i2\pi s} \).

Es fällt auf, dass das die Statistik der Teilchen beschreibende Vorzeichen \((-1)^{2s}\) in (8.1) mit diesem Vorzeichen übereinstimmt. Da der Spin der Teilchen nur mit dem Verhalten der Wellenfunktionen unter Drehungen zusammenhängt – für seine Definition wird also nicht die gesamte Lorentzgruppe benötigt –, wird seit langem vermutet [P], dass ein Beweis des Spin-Statistik-Theorems existiert, der ausschließlich auf den Axiomen der nichtrelativistischen Quantenmechanik beruht. Die Beweise von Pauli, Fierz oder Streater/Wightman greifen demnach auf teilweise unnötige Voraussetzungen zurück. Es sind mittlerweile auch schon viele Beweise geführt worden, die mit deutlich weniger Voraussetzungen als die obigen auskommen ([MSS-BDG] [Gu-Ma][Mick]). Teilweise gehen diese Beweise auf den sogenannten topologischen Beweis von Finkelstein und Rubinstein [FR] zurück, der im wesentlichen auf dem "Gürteltrick" im \(\mathbb{R}^4 \) basiert. Der grösste Teil dieser Arbeiten greift aber die Idee (aus der sehr lesenswerten Originalarbeit) von Leinaas und Myrheim [LM] auf, dass man (als Konsequenz aus dem Gibbs-Paradoxon) die Quantenmechanik identischer Teilchen über dem Konfigurationsraum \(Q \) dieser Teilchen formulieren sollte. Dieser ist zum Beispiel für zwei identische Teilchen in drei Dimensionen keineswegs als \(\mathbb{R}^3 \times \mathbb{R}^3 \) gegeben. Vielmehr muss man diejenigen Konfigurationen, die durch Vertauschen der beiden Teilchen entstehen, identifizieren. Das ist äquivalent zur Division durch die Wirkung der Permutationsgruppe \(\mathbb{Z}_2 \). Darüber hinaus werden aus technischen Gründen zuvor diejenigen Konfigurationen

\[
\Delta = \left\{ \left(\vec{R}, \vec{r} = \vec{0} \right) \mid \vec{R}, \vec{r} \in \mathbb{R}^3 \right\},
\]

bei denen sich beide Teilchen im gleichen Punkt befinden, herausgenommen. Es ist folglich

\[
Q = (\mathbb{R}^6 - \Delta) / \mathbb{Z}_2.
\]

(Ohne das Herausnehmen von \(\Delta \) würde sich nach der Division durch \(\mathbb{Z}_2 \) keine Mannigfaltigkeit ergeben.) Der Raum \(Q \) ist nicht einfach zusammenhängend. Die Möglichkeit

Vor kurzem haben dann Berry und Robbins [BR] die Diskussion um eine neue Zutat bereichert:

In den oben zitierten Arbeiten geht man stets davon aus, dass die Wellenfunktion der beiden Teilchen keine einwertige Funktion sein muss. Der Raum Q geht ja aus seiner Überlagerung \mathbb{R}^6 durch Identifikation der Punkte \vec{r} und $-\vec{r}$ hervor. Wegen (8.1) hat die Wellenfunktion (für fermionische Statistik) in diesen beiden Punkten aber nicht den gleichen Funktionswert. Beschränkt man sich auf skalare Teilchen1 so ist

$$\Psi(\vec{R}, \vec{r}) = (-1)^K \Psi(\vec{R}, -\vec{r}),$$

mit einem Vorzeichen $(-1)^K$, das die Statistik der Teilchen bestimmt. Dieses Vorzeichen kann man als Charakter der Fundamentalgruppe $\pi_1(Q) \cong \mathbb{Z}_2$ interpretieren.

Mit der üblichen Projektion $\pi : \mathbb{R}^6 \rightarrow Q$ sind \vec{r} und $-\vec{r}$ nämlich die Urbilder des gleichen Punktes $q = \pi(\pm \vec{r}) \in Q$. Hebt man einen geschlossenen Weg γ in Q, der q enthält, nach \mathbb{R}^6, so ergibt sich nur dann wieder ein geschlossener Weg, wenn γ zusammenziehbar ist. Anderfalls ergibt sich ein Weg $\pi^{-1}(\gamma)$, der von \vec{r} nach $-\vec{r}$ führt. Dadurch ist in offensichtlicher Weise eine Wirkung der Fundamentalgruppe $\pi_1(Q)$, die nur zwei Klassen enthält (nämlich die zusammenziehbaren und die nichtzusammenziehbaren geschlossenen Wege), auf \mathbb{R}^6 definiert. Wenn man die Wellenfunktion Ψ, entlang eines solchen in Q geschlossenen Weges $\pi^{-1}(\gamma)$ parallel transportiert, so erhält sie ein zusätzliches Vorzeichen, das nur von der Homotopie-Klasse $[\gamma]$ von γ abhängt, und das man, auf \mathbb{R}^6 angehoben, als

$$\Psi(\gamma(\pi^{-1}(q))) = e^{i\alpha([\gamma])}\Psi(\pi^{-1}(q))$$

interpretieren kann, was nur eine andere Schreibweise für (8.1) ist. Weil die Wellenfunktion über \mathbb{R}^6 einwertig sein muss, schließt man dann auch ohne besondere Mühe auf

$$a([\gamma_1]) + a([\gamma_2]) = a([\gamma_1] \cdot [\gamma_2]).$$

Die auftretenden Phasenfaktoren können dehalb als Charaktere der Fundamentalgruppe $\pi_1(Q) \cong \mathbb{Z}_2$ interpretiert werden [HMS]. Weil diese nur zwei inäquivalente irreduzible Darstellungen besitzt, gibt es dann auch nur zwei mögliche Statistiken. Es

1wie es die meisten Autoren leider tun, denn genau das ist laut Berry/Robbins der Fehler
Das Spin-Statistik-Theorem aus einem nichtkommutativen Blickwinkel

muss an dieser Stelle betont werden, dass die nichteinwertigen Wellenfunktionen für fermionische Statistik nichtdestoweniger als global wohldefinierte (und insbesondere einwertige) Objekte über Q aufgefasst werden können, nämlich als Schnitte in ein (nichttriviales) Vektorbündel. Das wird später noch herausgearbeitet.

Man kann – in dieser Philosophie – ganz gut mit nichteinwertigen Wellenfunktionen für skalare Teilchen leben. Andererseits existieren in der Natur ausschließlich skalare Teilchen mit einwertigen Wellenfunktionen, also Bosonen. Teilchen mit Spin $s > 0$ werden in den oben zitierten Arbeiten vereinfachend durch skalare Wellenfunktionen beschrieben, welche bei Drehungen um den Winkel π allerdings einen Phasenfaktor $(-1)^{2s}$ (für zwei Teilchen) erhalten. Bei den dort verwendeten geometrischen Konstruktionen, wäre es allerdings auch sehr schwierig, mit “richtigen” Spinoren zu arbeiten.

Berry und Robbins arbeiten demgegenüber mit rein algebraischen Methoden. Sie gehen von der Einwertigkeit der Gesamtwellenfunktion

$$\Psi(\vec{R}, \vec{r}) = \sum_{m_1, m_2} \Psi(\vec{R}, \vec{r}; m_1, m_2) \ket{m_1, m_2}$$

der Teilchen aus. Die Einwertigkeit von Ψ kann man in der Tat erreichen, wenn man statt einer Spinbasis, die auf Q konstant ist, eine von \vec{r} abhängige Spinbasis wählt. In der obigen Notation wären die $\ket{m_1, m_2}$ also $(2s + 1)$-Tupel, deren Einträge Funktionen von \vec{r} sind. Wählt man diese Funktionen dann so, dass

$$\ket{m_1, m_2}(\vec{r}) = (-1)^{2s}\ket{m_2, m_1}(-\vec{r})$$
gilt, so ist Ψ wegen der Eigenschaft (8.1) der Koeffizienten $\Psi(\vec{R}, \vec{r}; m_1, m_2)$ einwertig.

$$P_{12}\Psi = \Psi.$$
in der Folge demnach nur noch Funktionen von $\vec{r} \in S^2$, also Elemente von $C(S^2)$ betrachtet. Der Konfigurationsraum der beiden Teilchen, der durch Identifikation der Punkte \vec{r} und $-\vec{r}$ aus der Sphäre entsteht, ist dann als \mathbb{RP}^2 gegeben. Die Funktionen $C(\mathbb{RP}^2)$, können sehr leicht in die Algebra $\mathcal{A} = C(S^2)$ eingebettet werden: Jede Funktion auf S^2 kann eindeutig in ihren unter $\vec{r} \mapsto -\vec{r}$ symmetrischen, sowie den entsprechenden antisymmetrischen Anteil zerlegt werden. Dementsprechend kann auch die Algebra \mathcal{A} der Funktionen auf S^2 als direkte Summe der Unteralgebra \mathcal{A}_+ der symmetrischen (geraden) Funktionen mit dem Untervektorraum \mathcal{A}_- der antisymmetrischen (ungeraden) Funktionen geschrieben werden,
\[
\mathcal{A} = \mathcal{A}_+ \oplus \mathcal{A}_-.
\]

Die Unteralgebra \mathcal{A}_+ ist offensichtlich isomorph zur Algebra $C(\mathbb{RP}^2)$ der Funktionen auf dem Konfigurationsraum. Für das Spin-Statistik-Theorem spielt aber auch der antisymmetrische Teil \mathcal{A}_-, der keine Algebra bildet, eine Rolle. Insbesondere muss ja für skalare Teilchen ausgeschlossen werden, dass deren Wellenfunktion in \mathcal{A}_- liegt. Klärerweise ist \mathcal{A}_- ein Modul über \mathcal{A}_+, denn das Produkt einer ungeraden Funktion mit einer geraden ist ja wieder ungerade. Man überlegt sich leicht, dass dieser Modul endlich erzeugt ist:

Die Kugelflächenfunktionen $Y_{l,m}$ haben die Parität $(-1)^l$,
\[
Y_{l,m}(-\vec{r}) = (-1)^l Y_{l,m}(\vec{r}).
\]

Weil jede stetige Funktion auf der Sphäre als Potenzreihe in den drei Kugelflächenfunktionen zu $l = 1$ geschrieben werden kann, ist, wenn man noch die Parität berücksichtigt, klar, dass diese drei Elemente als Erzeuger über \mathcal{A}_+ von \mathcal{A}_- verwendet werden können. Nicht ganz so offensichtlich ist die Tatsache, dass \mathcal{A}_- ein projektiver Modul ist. Der entsprechende Projektor p liegt in $M_3(\mathcal{A}_+)$, und kann wie folgt konstruiert werden.

Bezüglich der üblichen Drehipulsgeneratoren L_i, die sowohl auf \mathcal{A}_- als auch auf \mathcal{A}_+ definiert sind, ist der Modul \mathcal{A}_- kovariant. Man betrachtet nun als Hilfskonstruktion den Vektorraum \mathcal{A}_3^- mit der $su(2)$-Darstellung
\[
J_i = L_i \otimes \mathds{1}_3 + \text{id}_{\mathcal{A}_+} \otimes \tau_i
\]

wobei τ_i die Matrizen der dreidimensionalen Darstellung bezeichnen. In der Zerlegung von \mathcal{A}_3^- nach irreduziblen Darstellungen unter den J_i gibt es dann (genau) eine triviale Darstellung, die durch den Vektor
\[
|\psi\rangle = N \begin{pmatrix}
Y_{1,1} \\
- Y_{1,0} \\
Y_{1,-1}
\end{pmatrix}
\]

gegeben ist. $N \in \mathbb{R}$ ist dabei eine Normierungskonstante, die man so wählen kann, dass $\mathcal{A}_+ \ni \langle \psi | \psi \rangle = 1$ ist. Dann ist
\[
p_- = |\psi\rangle \langle \psi|
\]
ein Projektor vom Rang Eins (Spur $p_- = 1$), dessen Matrix-Einträge gerade Funktionen sind, also ist $p \in M_3(\mathcal{A}_+)$. Dieser Projektor beschreibt \mathcal{A}_- als projektiven endlich erzeugten Modul über \mathcal{A}_+.

\[(8.2)\]
Das Spin-Statistik-Theorem aus einem nichtkommutativen Blickwinkel

Proposition 8.1.1. Es ist
\[A_- \cong p_- A_+^2. \]

Die antisymmetrischen Funktionen auf \(S^2 \) können also als Schnitte in ein nichttriviales Vektorbündel interpretiert werden. Es ist dabei sehr wichtig, dass \(|\psi\rangle\) nicht in \(A_+^2 \) liegt. Ansonsten wäre \(|\psi\rangle\) eine partielle Isometrie (über \(A_+ \)), und folglich wäre das durch \(p_- \) beschriebene Bündel zu dem trivialen Linienbündel äquivalent. (Zur Erinnerung: Zwei Projektoren \(p, q \) sind genau dann äquivalent, wenn es eine partielle Isometrie \(v \) gibt, mit \(p = vv^* \) und \(q = v^* v \).) Auf einen Beweis der obigen Proposition soll an dieser Stelle verzichtet werden.

Aus der Theorie der geometrischen Quantisierung ist gut bekannt, dass der Hilbertraum eines quantenmechanischen Systems stets als (quadratintegrierbar) Schnitte in ein flaches Vektorbündel über dem Konfigurationsraum gegeben ist. (Wenn das Bündel nicht flach wäre, so hätte die Holonomien entlang zusammenziehbarer geschlossener Wege, was mit der Eindeutigkeit der Wellenfunktion nicht verträglich wäre.) Solche flachen Bündel stehen in Eins-zu-Eins-Korrespondenz zu Charakteren der Fundamentalgruppe des Konfigurationsraums. Für einfach zusammenhängende Räume, wie \(\mathbb{R}^6 \), gibt es – modulo Rang – nur ein flaches Bündel, das triviale. Über \(\mathbb{R}P^2 \) existieren aber zwei solche Bündel, die zu \(A_+, A_- \) korrespondieren. Auch das ist wohlbekannt. Die Flachheit des Bündels \(A_- \) kann auch leicht nachgeprüft werden: Die Krümmung ist in zwei Dimensionen ja allgemein als Spur \[\text{Spur} \] gegeben, und man prüft leicht nach, dass dieser Ausdruck für \(p_- \) verschwindet.

Mit dieser Vorbereitung könnte man nun an die Untersuchung des Spin-Statistik-Zusammenhangs für skalare Teilchen gehen. Es empfiehlt sich aber, zuvor die obige Konstruktion für beliebige Spins \(s \) der Teilchen zu verallgemeinern. In dieser Möglichkeit besteht gerade der Vorteil der algebraischen Beschreibung.

Für zwei identische Teilchen mit Spin \(s \) startet man zur Konstruktion mit dem Hilbertraum \(A \otimes (V^s \otimes V^s) \), wobei \(V^s \) wieder den Darstellungsraum zum Spin \(s \) bezeichnet.

Eine wichtige Eigenschaft der Produkt-Darstellung von \(su(2) \) auf \(V^s \otimes V^s \) kommt in dem Frobenius-Theorem zu Ausdruck:

Der Flip-Endomorphismus \(\sigma \) auf \(V^s \otimes V^s \), der die beiden Faktoren des Tensorprodukts vertauscht, kommutiert mit der Darstellung von \(su(2) \). (Äquivalent dazu kann man auch sagen: \(U(su(2)) \) ist kokommutativ.) Zurlegt man

\[V^s \otimes V^s \]
in irreduzible Darstellungen, so ist jede auftretende irreduzible Darstellung folglich entweder ein Unterraum zum Eigenwert \(+1\), oder ein Eigenraum zum Eigenwert \(-1\) von \(\sigma \). Die Zerlegung \(V^s \otimes V^s = V_+ \oplus V_- \) in den unter Vertauschen der Spins der Teilchen symmetrischen/antisymmetrischen Unterraum respektiert also die \(su(2) \)-Symmetrie.

Die höchste auftretende irreduzible Darstellung \(V^{2s} \) ist dabei immer symmetrisch (es gibt ja nur einen symmetrischen Vektor mit \(m_1 + m_2 = 2s \), die nächste auftretende \(V^{2s-1} \) immer antisymmetrisch, \(V^{2s-2} \) dann wieder symmetrisch und so weiter.

Fermionische beziehungsweise bosonische Statistik beschreibt man indem man die entsprechende Äquivalenzrelation abdividiert. Man erhält so die beiden Hilberträume
\[\mathcal{H}_{\text{sym}} = A_+ \otimes V_+ \oplus A_- \otimes V_- \]
Für die Diskussion des Spin-Statistik-Zusammenhangs empfiehlt es sich die Räume \(V_\pm \) weiter in irreduzible Darstellungen zu zerlegen, wobei gleichzeitig der Spin \(s \) der Teilchen explizit hervortritt. Im physikalischen Fall ergibt sich dann, in kompakter Schreibweise, der Hilbertraum

\[
\mathcal{H}_s^{\text{phys}} = A_+ \otimes \left(\bigoplus_{k=0}^{s-1} V^{2k+1} \right) \oplus A_- \otimes \left(\bigoplus_{k=0}^{s} V^{2k} \right),
\]

(8.3)

wobei natürlich nur über ganzzahlige Werte von \(k \) summiert wird. Im unphysikalischen Fall, wenn man also den falschen Spin-Statistik-Zusammenhang wählt, ist hingegen

\[
\mathcal{H}_s^{\text{unphys}} = A_+ \otimes \left(\bigoplus_{k=0}^{s} V^{2k} \right) \oplus A_- \otimes \left(\bigoplus_{k=0}^{s-1} V^{2k+1} \right).
\]

Es fällt sofort auf, dass das nichttriviale Bündel \(A_- \) im physikalischen Fall niemals skalar auftritt, sondern stets tensoriert mit \(V^{1} \cong \mathbb{C}^{0} \), und weiter \(V^{3}, V^{5}, \ldots \). Im unphysikalischen Fall, wenn man zum Beispiel Spin \(\frac{1}{2} \)-Teilchen als Bosonen behandelte, ergäbe sich

\[
\mathcal{H}_s^{\frac{1}{2}}^{\text{unphys}} = A_+ \otimes V^{0} \oplus A_+ \otimes V^{1}.
\]

Mit den von Berry und Robbins übernommenen Forderungen 1., 2. und 4. ergeben sich dann die folgenden **Bedingungen an die Spinbasis:**

1. Die Gesamtwellenfunktion \(\Psi \) der beiden Teilchen ist einwertig.

2. Es existiert eine Spinbasis, so dass jede Wellenfunktion als

\[
\Psi(\vec{R}, \vec{r}) = \sum_{m_1, m_2} \Psi(\vec{R}, \vec{r}; m_1, m_2) \left\vert m_1, m_2 \right\rangle
\]

geschrieben werden kann, und ein \(K \in \mathbb{Z} \) existiert mit der Eigenschaft

\[
P_{12} \left\vert m_1, m_2 \right\rangle = (-1)^K \left\vert m_1, m_2 \right\rangle
\]

für alle Werte \(m_1, m_2 \).
3. **Definition der Observable Spin:** Auf dem von der Spinbasis aufgespannten \((2s+1)^2\)-dimensionalen Vektorraum, existiert eine Darstellung \(S_i\) der Lie-Algebra \(su(2)\), die äquivalent zur Produkt-Darstellung auf \(V^s \otimes V^s\) ist, derart dass sich die Gesamtwellenfunktion unter dem Erzeuger \(J_i\) von Drehungen im Raum gemäß

\[
J_i \Psi = \sum_{m_1, m_2} \{(L_i \Psi (\vec{r}; m_1, m_2)) \left| m_1, m_2 \right\} + \Psi(\vec{r}; m_1, m_2) \left(S_i \left| m_1, m_2 \right\) \}
\]

transformiert. Hierbei bezeichnet \(L_i\) die üblichen Drehimpulsgeneratoren, die auf die skalaren Koeffizienten wirken, während \(J_i\) natürlich der Operator des Gesamtdrehimpulses (inklusive Spin) ist.

4. Die Elemente \(\left| m_1, m_2 \right\rangle \left(\vec{r} \right)\) der Spinbasis verschwinden in keinem Punkt \(\vec{r} \in S^2\).

Bemerkung 8.1.2. Die dritte Bedingung ersetzt alle zusätzlichen Annahmen aus der Arbeit Berry/Robbins. Es sollte bereits hier darauf hingewiesen werden, dass die Existenz der Operatoren \(S_i\) keineswegs trivial ist. Die \(\left| m_1, m_2 \right\rangle\) hängen ja von \(\vec{r}\) ab, und es ist dehalb nicht selbstverständlich, dass man sie so wählen kann, dass sie das oben geforderte Transformationsverhalten unter Drehungen haben. Ohne dieses Transformationsverhalten würde es aber wenig Sinn machen, von einer Spinbasis zu sprechen, denn insbesondere definiert es ja die Observable \(S_i\), die man als Spin interpretieren kann, und die dritte Bedingung verlangt nicht mehr (aber auch nicht weniger) als die Existenz dieser Observablen.

Diese Bedingungen genügen aber nicht um auf das Spin-Statistik-Theorem zu schließen. Betrachtet man zum Beispiel skalare Teilchen, so wäre eine Lösung für die Spinbasis natürlich die physikalisch richtige

\[
\left| 0, 0, s \right\rangle = 1 \in A_+,
\]

die die bosonische Statistik liefert. Es gibt aber auch eine Lösung \(\left| 0, 0, as \right\rangle\), die alle vier oben genannten Bedingungen erfüllt, die aber auf fermionische Statistik führt. Diese Lösung ist im Wesentlichen durch die dritte Bedingung, das Verhalten unter Drehungen, fixiert. Für ein skalares Teilchen sollte \(\left| 0, 0, as \right\rangle\) ja invariant unter Drehungen sein, weshalb \(\left| 0, 0, as \right\rangle\) nicht in \(A_-\) liegen kann. Auf \(A_-\) ist nämlich nur die \(su(2)\) vermittels der Drehimpulsoperatoren \(L_i\) definiert, und bezüglich dieser existiert keine invariante, ungerade Funktion. Das ändert sich aber, wenn man zu \(A_+^3\) übergeht. Dann kann man zur Darstellung

\[
J_i = L_i \otimes 1 + i d A_- \otimes \tau_s
\]
übergehen, und bezüglich dieser Darstellung existiert ein invarianter Vektor (der oben schon einmal verwendet wurde)

\[
\left| 0, 0, as \right\rangle = N \begin{pmatrix} Y_{1,1} \\ -Y_{1,0} \\ Y_{1,-1} \end{pmatrix} . \quad (8.4)
\]
Dieser Vektor verschwindet auch nirgends auf $\mathbb{R}P^2$, und erfüllt sogar Berrys Parallel-transportbedingung:

$$\langle 0, 0, as | c | 0, 0, as \rangle = 0$$

wovon man leicht überzeugt (d bezeichnet das Differential auf der Sphäre, welches auf die ungeraden Kugelflächenfunktionen wirkt). Aus der bloßen Existenz der Spinbasis folgt also keinesfalls das Spin-Statistik-Theorem. Hierzu bedarf es weiterer, physikalisch motivierter Anforderungen an die Theorie, die wenn möglich im Rahmen der nichtrelativistischen Quantenmechanik formulierbar sein sollten. Notfalls kann man ja immer noch auf die relativistische Quantenfeldtheorie ausweichen. Es ist, soviel ich weiß, auch noch nicht hinreichend untersucht worden, welche Rolle die geometrische Deutung des Statistik-Vorzeichens dort spielt. Das wäre ohnehin ein lohnenswertes Anschlussprojekt an die Untersuchungen im Rahmen der Quantenmechanik.

Die obige Diskussion zeigt aber in jedem Fall, dass die auftretenden geometrischen Strukturen in der algebraischen Sprache der Nichtkommutativen Geometrie besonders klar zum Vorschein kommen. Darüber hinaus ist der technische Aufwand, den man benötigt um alle bekannten Resultate zu reproduzieren, an den Originalarbeiten gemessen, erstaunlich gering. Das Spin-Statistik-Problem ist damit ein schönes Beispiel dafür, wie nützlich das Hilfsmittel Nichtkommutative Geometrie in der Quantenmechanik sein kann.

Im Hinblick auf die Nichtkommutative Beschreibung des Standardmodells, stellt sich aber andererseits auch die Aufgabe, Quantentheorie auf Nichtkommutativen Räumen formulieren zu können. Dann wird es sicherlich notwendig sein, eine entsprechende Verallgemeinerung des Spin-Statistik-Theorems zur Verfügung zu haben. Auch aus diesem Grund ist es wichtig, das Problem in der algebraischen Sprache zu formulieren, denn das ist sicher der erste Schritt auf dem Weg zu einer solchen Verallgemeinerung. Meinens Erachtens gibt es aber sehr viel dringlichere Aufgaben zu bewältigen, bevor man sich an Quantenfeldtheorie auf Nichtkommutativen Räumen wagen kann. (Die in letzter Zeit erschöpfend diskutierten störungstheoretischen Rechnungen über dem nichtkommutativen \mathbb{R}^d mögen da eine Ausnahme bilden. Es erscheint mir aber fraglich zu sein, ob man aus diesen Arbeiten sehr viel lernen kann, das für die Quantisierung auf beliebigen nichtkommutativen Räumen hilfreich sein könnte. Insb. ist man ja an Beispielen interessiert, die nicht als Deformation entstehen, wie zum Beispiel der nichtkommutativen Geometrie des Standardmodells.)

8.2 Spektrale Quadrupel oder: Die Zeit wird es richten

Der größte Mangel der bisherigen Anwendungen der Nichtkommutativen Geometrie auf die Hochenergiephysik (einschließlich der Gravitation) besteht sicher in der euklidischen Formulierung der entsprechenden Modelle. Die Fermionverdopplung in der nichtkommutativen Beschreibung des Standardmodells ist zum Beispiel auf die Verwendung der euklidischen Signatur der Metrik zurückzuführen, und natürlich benötigt man zur Formulierung von realistischen Quantenfeldtheorien Konzepte wie zum Beispiel Kausalität. (Die Ausrede, man könne die Theorie ja zunächst euklidisch formulieren und dann zum “richtigen Zeitpunkt” “Wick-rotieren”, wäre höchstens dann
akzeptabel, wenn klar wäre, was unter nichtkommutativem “Wick-rotieren” zu verstehen ist.)

Ein anderes wichtiges Problem, das mit dem obigen eng zusammenhängt, ist das Fehlen eines vollständigen Wirkungsprinzips. Man kann zwar eine “Wirkung” formulieren, bei der eine Lagrangedichte über den gesamten (euklidischen) Raum integriert wird, und auch das nur für kompakte Räume, man kann aber zur Zeit noch keine Randwerte in diese Wirkung einbauen. Die Lösungen der Bewegungsgleichungen (bezüglich die Extremalpunkte dieser Wirkung) sind dann natürlich nicht eindeutig.

Für ein vollständiges Wirkungsprinzip sollte man in der Lage sein, die Werte der Felder auf zwei beliebigen raumartigen Hyperflächen, also die Anfangs- und Endkonfigurationen des Feldes, als Randbedingungen, unter denen das Extremum der Wirkung zu bestimmen ist, vorzugeben. Von diesem Ziel ist man im Moment aber noch recht weit entfernt.

Global hyperbolische Raumzeiten der Dimension $d+1$ (physikalisch ist nur die Lorentz-Signatur interessant) lassen sich stets als $\Sigma \times \mathbb{R}$ schreiben, wobei Σ eine d dimensionale Mannigfaltigkeit ist. Das entspricht einer Blätterung (Foliation) der Raumzeit entlang der Zeitachse \mathbb{R}. Die raumartige Hyperfläche Σ_t ist zu jedem Zeitpunkt homöomorph zu Σ.

Es ist eine recht nahe liegende Idee, beide Fliegen (auch die oben angedeuteten Probleme) mit einer Klappe zu schlagen, indem man mit einer solchen ($d+1$)-Aufspaltung der Raumzeit arbeitet, und die raumartigen Hyperflächen Σ_t durch spektrale Tripel beschreibt. Die Zeitkoordinate t wird dann als Parameter aufgefasst, so dass man eine ganze Familie von spektralen Tripeln erhält.

Zum Auftakt gilt es die Frage nach dem richtigen Hilbertraum für die spektralen Tripel der Hyperflächen Σ_t, oder besser nach der Darstellung π_t der Algebra $C(\Sigma_t)$, zu klären. Es spricht natürlich nichts gegen die einfache Wahl $H^t = L^2(\Sigma_t, S_t)$ zu jeder Zeit t, wobei mit S_t die Einschränkung des $(d+1)$-dimensionalen Spinbündels auf Σ_t gemeint ist. Dies würde auf eine Familie von Hilberträumen führen, die man dann – um eine glatte Zeitenwicklung beschreiben zu können – in geeigneter Weise “zusammenkleben” müsste. Einen einfachen und eleganten Weg die Zeitenwicklung zu implementieren bietet aber ohnehin der Hamilton-Operator des Spinor-Feldes:

Die Dirac-Gleichung auf der vollständigen Raumzeit kann im $d+1$-Formalismus in
Hamiltonscher Form,

\[H \psi = i \partial_t \psi, \]

geschrieben werden, wobei der Hamilton-Operator (zu jedem Zeitpunkt) dann als

\[H = -iN \left(\omega_\mu^a \gamma_\mu e^a_0 e^0_i g^{ij} D_j^a - m \gamma_\alpha e^\alpha_0 \right) + N^i \partial_i \]

(8.5)
gegeben ist. Dabei bezeichnet \(\omega_\mu^a \) die Komponenten des Spinzusammenhangs, \(D^a_\mu \) die entsprechenden kovarianten Ableitungen, und \(\gamma_\alpha \) die Generatoren der Clifford-Algebra

\[\{ \gamma_\alpha, \gamma_\beta \} = -2 \eta_{\alpha \beta}. \]

\(e^\mu_0 \) ist das lokale \((d - 1)\)-Bein, das so gewählt wird, dass zu jedem Zeitpunkt \(t \) die räumlichen Komponenten \(e^\mu_0 \) tangential zu \(\Sigma_t \) liegen, während \(e^\mu_0 \) orthogonal zu \(\Sigma_t \) steht. Der Tangentialvektor an die (beliebig gewählte) Zeitachse kann dann gemäß

\[\partial_t = N \partial_0 + N^i \partial_i \]

zerlegt werden, was zugleich die sogenannte Lapse-Funktion \(N \) und den Shift-Vektor \(N^i \) definiert. Diese beschreiben also die gewählte \(t \)-Richtung (relativ zu den vorgegeben Hyperflächen \(\Sigma_t \), und der dazu orthogonalen \(0 \)-Richtung), und sind folglich Ausdruck der Willkür bei deren Wahl. (Der Vektor \(N^i \) berücksichtigt im Wesentlichen die freie Wahl der Koordinaten auf \(\Sigma_t \).)

Klarerweise gibt es deshalb unterschiedliche Hamilton-Operatoren, die dieselbe Raumzeit beschreiben. Das wird in der Folge zu beachten sein.

Vermittels \(H \) kann man nun die unitären Zeitenwicklungsoptomatoren

\[U_H(t_1, t_2) : \mathcal{H}_{t_1} = L^2(\Sigma_{t_1}, S_{t_1}) \rightarrow \mathcal{H}_{t_2} = L^2(\Sigma_{t_2}, S_{t_2}) \]

definieren, mit deren Hilfe die verschiedenen Hilberträume identifiziert werden können. Entsprechende Elemente \(\psi_{t_1}, \psi_{t_2} \) werden dabei miteinander identifiziert, wenn und nur wenn sie Einschränkungen derselben Lösung der Dirac-Gleichung auf \(\Sigma_{t_1} \) beziehungsweise \(\Sigma_{t_2} \) sind.

Es ist natürlich wesentlich eleganter und einfacher auf einem einzigen Hilbertraum zu arbeiten, dem Raum der Lösungen der Dirac-Gleichung, also dem Phasenraum des Spinorfeldes. Dieser Raum ist ja isomorph zu \(L^2(\Sigma_t, S_t) \), weil die Lösungen durch ihre Werte auf einer raumartigen Hyperfläche bereits eindeutig bestimmt sind. Zugleich kann er als “Einteilchen”-Unterraum des Fockraums der Quantentheorie des Spinorfeldes aufgefasst werden. Wenn man bedenkt, dass eines der großen Ziele der Nichtkommutativen Geometrie darin besteht, die Geometrie der Raumzeit aus der (vollständigen) Quantentheorie ableiten zu können, ist das ein sehr wünschenswerter Begleiteffekt. Die in der Folge eingeführten spektralen Quadrupel bilden somit immerhin schon die Vorstufe einer nullten Näheierung, insofern als sie die klassische Raumzeit in einer an die Quantenfeldtheorie angepassten Sprache beschreiben. Die Raumzeit wird dabei aber noch als fester Hintergrund, den es zu rekonstruieren gilt, aufgefasst, aber nicht als dynamische Größe, die ihrerseits einer Quantisierung bedarf.

Gibt man nun auf diesem Hilbertraum \(\mathcal{H} \cong L^2(\Sigma, S) \) (die Spinbündel sind für alle Zeiten äquivalent) zu einer beliebigen Zeit \(t_0 \) die übrigen Daten
D_{t_0}, \pi_{t_0}(C(\Sigma)), \gamma_{t_0}, J$ eines spektralen Tripels vor, so kann man vermittels der Zeitentwicklungsoperatoren $U_H(t_1, t_2)$ auch die spektralen Tripel zu allen anderen Zeitpunkten t konstruieren, indem man einfach die beteiligten Operatoren O_{t_0} gemäß

$$O_t = U_H(t_0, t)O_{t_0}U_H(t, t_0)$$

von t_0 nach t transportiert. Das setzt natürlich voraus, dass die Zeitentwicklungsoperatoren $U_H(t_1, t_2)$ – und damit auch der Hamilton-Operator H – explizit vorgegeben sind. Ein einziger Blick auf (8.5) genügt aber, um einzusehen, dass es möglich sein sollte den räumlichen Dirac-Operator

$$D_t = \gamma_\alpha e_\alpha^\beta g^{ij} D_j^\beta$$

auf den Hyperflächen Σ_t daraus abzuleiten. In den Daten des spektralen Quadrupels wird er deshalb nicht auftauchen. Wie man ihn aus diesen Daten rekonstruieren kann, wird später noch erläutert.

Wenn man im $(d+1)$-Formalismus – und insbesondere mit dem Hamilton-Operator – arbeitet, ist aber stets die Willkür bei der Wahl der Zeitrichtung zu beachten. Es muss also geklärt werden, wie man verschiedene spektrale Quadripel, die die gleiche Raumzeit beschreiben, identifizieren kann. Bei den spektralen Tripel geschieht dies in sehr natürlicher Weise durch den Begriff der unitären Äquivalenz. Die Diffeomorphismen sind in diesem Fall ja als unitäre Operatoren auf dem Hilbertraum dargestellt. Auf dem Hilbertraum $L^2(\Sigma, S)$ sind aber nicht alle Diffeomorphismen der Raumzeit $\Sigma \times \mathbb{R}$ als unitäre Operatoren dargestellt. (Das ist in der algebraischen Sichtweise der Grund für das Auftreten von N und N^\dagger.) Bis jetzt konnten wir noch keine Lösung dieses Problems, äquivalente (aber nicht unitär äquivalente) Hamilton-Operatoren zu identifizieren, finden.

Ein einfacher, wenn auch unschöner Ausweg besteht paradoxerweise aber darin, die Daten des spektralen Quadrupels zu erweitern. Wenn man nämlich statt nur eines einzigen Hamilton-Operators, der für die Rekonstruktion der Raumzeit völlig genügen würde, alle Hamilton-Operatoren, die die gleiche Raumzeit beschreiben, in die Daten aufnimmt, so erhält man trivialerweise eine eindeutige Beschreibung der Raumzeit – allerdings eine äußerst redundante. Auf diese Weise ist dann die Kovarianz der Formulierung unter Diffeomorphismen sicher gestellt.

Das mag wie ein Taschenspielertrick erscheinen. Man sollte aber nicht vergessen, dass die nun (endlich) folgenden Axiome nur als Arbeitshypothese zu verstehen sind. Sie bilden sicher keine endgültige Formulierung. Der große Vorteil dieser Axiome gegenüber früheren Arbeiten besteht darin, dass sie die explizite Ausarbeitung konkreter Beispiele, wie zum Beispiel die de-Sitter-Raumzeit, ermöglichen. Mit Hilfe dieser Beispiele sollte es dann auch gelingen, eine Lösung des oben angesprochenen Problems der Kovarianz der Formulierung zu finden, die die zur Zeit noch vorhandenen Redundanzen der Beschreibung beseitigt. (Zu diesem Zweck bräuchte man ohnehin in den entsprechenden Beispielen verschiedene, äquivalente Hamilton-Operatoren auf demselben Hilbertraum.)

Bevor nun die Axiome für spektrale Tripel formuliert werden können, ist noch eine letzte Begriffsklärung, die eine besonders kurze und elegante Formulierung ermöglicht, vonnöten.
Für jede Kategorie (eine Menge von Objekten zusammen mit Morphismen – beziehungsweise Pfeilen –, zwischen diesen Objekten, so dass gewisse Axiome erfüllt sind) bildet eine beliebige Untermenge \(G \) der Morphismen einen Gruppoiden, vorausgesetzt jedes Element dieser Untermenge hat ein Inverses darin.

Die Algebren \(\mathcal{A}_i = \pi_i(C(\Sigma)) \) können als Objekte einer Kategorie aufgefasst werden, wenn man die unitären Äquivalenzen zwischen diesen Algebren als Morphismen verwendet. Insbesondere bilden die Zeientwicklungsoptoparatoren zu jedem Hamilton-Operator eine Untermenge dieser Morphismen, und weil die Inverse existiert, und ebenfalls ein Zeientwicklungsoptoparat ist, bilden sie also einen Gruppoiden.

Ein Operator, der in den Daten des spektralen Quadrupels benötigt wird, und der bisher noch nicht erwähnt wurde, ist der Operator der „Zeitrichtung” \(E \) der im kommutativen Fall mit \(\gamma_\alpha e_0^\alpha \) zu identifizieren ist. Mit seiner Hilfe werden einerseits die korrekten Kommutationsrelationen der Cliffordalgebra \(\mathcal{C}(\mathbb{C}) \) erreicht, und andererseits stellt er die \textit{Zeitorientierbarkeit} der beschriebenen Mannigfaltigkeit sicher. Strenggenommen muss man nur seine Existenz fordern, weil man ihn dann ebenfalls aus den übrigen Daten ableiten kann. Es ist aber einfacher ihn in die ohnehin viel zu gross geratene Datenflut aufzunehmen. Es ist die Anwesenheit dieses Operators, die aus dem Tripel ein Quadrupel macht.

Weil in der Definition des spektralen Tripels nicht auf eine einzige Zeit (einen Hamilton-Operator) Bezug genommen werden kann, wird in der Folge statt zum Beispiel \(\mathcal{A}_i \) besser \(\mathcal{A}_\bullet \) geschrieben. Das Anhängsel \(\bullet \) bezeichnet dabei Elemente einer Indexmenge, welche alle zugelassenen Zeitentwicklungen beinhaltet.

\[\text{Definition 8.2.1. [KP]} \]
Ein \textit{spektrales Quadrupel} \((\mathcal{H}, \mathcal{A}_\bullet, G, C, \gamma_\bullet, E_\bullet) \) besteht aus einer Menge von Algebren \(\mathcal{A}_\bullet \), dargestellt auf einem Hilbertraum \(\mathcal{H} \), einem Gruppoiden \(G \), sowie einem antilinearen Operator \(C \). Zusätzlich sind für jede der Algebren \(\mathcal{A}_\bullet \) zwei Operatoren \(\gamma_\bullet, E_\bullet \), gegeben, so dass die folgenden Bedingungen erfüllt sind:

1. \textit{Zeitentwicklung}
 Je zwei Algebren \(\mathcal{A}_1, \mathcal{A}_2 \) sind zueinander unitär äquivalent, mit einer nicht notwendigerweise eindeutigen unitären Äquivalenz \(U(\mathcal{A}_1, \mathcal{A}_2) \), und sie kommutieren nicht untereinander
 \[[\mathcal{A}_1, \mathcal{A}_2] \neq 0. \]
 Der Gruppoid \(G \) wird von einer Untermenge aller unitären Äquivalenzen zwischen einzelnen Algebren gebildet. Es wird vorausgesetzt, dass es eine Algebra \(\mathcal{A}_0 \) gibt, von der aus zu jeder Algebra in der Menge mindestens ein differenzierbarer Weg
 \[\alpha : \mathbb{R} \rightarrow G \]
 \[t \mapsto \alpha_t = U_H(\mathcal{A}_0, \mathcal{A}_i) \]
 existiert, mit \(\alpha_0 = \mathbb{1} \), und so dass der Generator \(iH \) (also die Ableitung von \(\alpha \) im Punkt \(t = 0 \)) die folgenden Bedingungen erfüllt.

2. \textit{Ladungskonjugation}
 Der antilineare Operator \(C \) kommutiert mit \(G \) und genügt der Gleichung [che]
 \[C^2 = (-1)^s(n), \]
 \[s(n) = \frac{(n-1)(n-2)(n-3)(n-4)}{8} \]
218 8.2 Spektrale Quadrupel oder: Die Zeit wird es richten

in der Raumzeitdimension n.

3. Ordnung-Eins-Bedingung
Für zwei beliebige Elemente \(f, g \in A_0 \) und jeden Generator \(H \) gilt
\[
[[f, H], g^0] = 0,
\]
mit \(g^0 = C g^C C^{-1} \).

4. Zeitrichtung
Für jede Algebra in der Menge existiert ein Operator \(E \), mit
\[
E^2 = -1 \quad \text{und} \quad E^* = -E
\]
und es gelten die folgenden Bedingungen 5. und 6.

5. Volumenform
Für jede Algebra existiert ein selbstadjungierter Operator \(\gamma \), mit \(\gamma^2 = 1 \), der in geraden Raumzeitdimensionen \(n \) mit \(E \) antikommutiert und für \(n \) ungerade mit \(E \) kommutiert.
Es gibt Elemente \(f_{i_0}, f_{i_1}, \ldots, f_{i_d} \) der jeweiligen Algebra, mit
\[
\gamma = E \sum_{i_k} f_{i_0} [\tilde{D}, f_{i_1}] \ldots [\tilde{D}, f_{i_d}]
\]
wenng \(n = d + 1 \) gerade ist, beziehungsweise
\[
\gamma = \sum_{i_k} f_{i_0} [\tilde{D}, f_{i_1}] \ldots [\tilde{D}, f_{i_d}]
\]
falls \(n = d + 1 \) ungerade ist. Der Operator \(\tilde{D} \) ist dabei wie folgt definiert:
\[
\tilde{D} = \begin{cases} i \gamma [H, \gamma] & n \text{ gerade} \\ iH & n \text{ ungerade} \end{cases}
\]
(8.6)

6. Geometrie des Raums
Für jede Algebra \(A \) der Menge bilden die Daten \(\langle A, \mathcal{M}, D = E[H, E], \gamma, C \rangle \) ein spektrales Tripel, wenn \(n \) ungerade ist. Wenn \(n \) gerade ist, bilden die Einschränkungen dieser Daten auf die beiden Eigenräume von \(E \) ebenfalls ein spektrales Tripel.

Bemerkung 8.2.2. Die in Bedingung 5. verwendeten Operatoren \(\tilde{D} \) sind keineswegs mit dem Dirac-Operator identisch. (Das liegt an dem Summanden \(N' \partial_i \) in \(H \).) Für ungerades \(n \) fallen die störenden Terme aber – wegen der Antisymmetrisierung – aus der Summe in der Definition des Hochschild-Zyklus heraus. Für gerades \(n \) hat \(\tilde{D} \) das gleiche Hauptsymbol und ist deshalb für die Definition eines Hochschild-Zyklus äquivalent zum Dirac-Operator. Das gleiche trifft auf den Operator \(D = E[H, E] \) zu, der für das spektrale Tripel auf den jeweiligen Hyperflächen verwendet wird. Er unterscheidet sich von dem „echten“ Dirac-Operator nur um die Addition eines Terms nullter Ordnung, der in den Axiomen für spektrale Tripel keine Rolle spielt. Er erfüllt aber – wegen 5. – automatisch
\[
D \gamma = (-1)^n \gamma D.
\]
Bemerkung 8.2.3. Es ist natürlich erlaubt $G \cong \mathbb{R}$ zu wählen. Dann gäbe es nur einen einzigen Hamilton-Operator, und nur eine Zeitrichtung. In diesem Fall würde es dann auch genügen, in den Daten des spektralen Quadrupels nur die Algebra für $t = 0$ (und entsprechend γ_0 und E_0) anzugeben. Ein minimales (reelles gerades) spektales Quadrupel wäre also als $(\mathcal{H}, A_0, iH, E_0, \gamma_0)$ gegeben, der Unterschied zu den Daten eines spektralen Tripels bestünde “nur” in dem zusätzlichen Operator E (und natürlich der Ersetzung des Dirac-Operators auf der Hyperfläche durch den Hamilton-Operator, was bei gegebenem E aber keinen großen Unterschied macht).

Man müsste sich dann aber wieder mit dem Problem der fehlenden Kovarianz der Formulierung herumärgern. Darüber hinaus ergeben sich aus der Wahl eines größeren G auch Möglichkeiten über die Situation einer einfachen geblätterten Raumzeit hinauszugehen.

Es sind aber Probleme mit der Wahl eines großen G – im Extremfall alle möglichen Zeiten – verbunden. Je größer G wird, umso mehr Algebren A_t braucht man in den Daten des spektralen Quadrupels. Diese Algebren entsprechen den Funktionen auf der Hyperfläche Σ_t, welche durch eine entsprechende Zeitentwicklung aus Σ_0 (korrespondierend zu A_0) hervorgehen. Gibt es nur einen Hamilton-Operator, so sind alle so entstehende Hyperflächen disjunkt. Man konstruiert sie als Spektrum der Algebren A_t (wenn diese kommutativ sind), und kann sie dann entlang der Zeitsachze zur Raumzeit zusammenkleben. Wenn es mehrere äquivalente Zeitentwicklungen gibt, ist das aber nicht mehr der Fall. Die entsprechend konstruierten Hyperflächen werden sich dann schneiden, und bei der Rekonstruktion der Raumzeit muss diesem Umstand natürlich Rechnung getragen werden. Will man aber Charaktere (also Punkte) von kommutativen C^*-Algebren vergleichen, so muss man diese Charaktere zunächst einmal auf eine größere Algebra, die alle relevanten Algebren als Unteralgebren enthält, fortsetzen. Dies wird im Allgemeinen aber nicht möglich sein, wenn die Menge an Algebren zu groß gewählt wird. Es bedarf also noch einer Einschränkung (einem Glattheitsprinzip!), an die Wahl der Menge der Algebren, und damit auch an G.

Bemerkung 8.2.4. Es ist nicht evident, dass alle Hamilton-Operatoren, die aus G abgeleitet werden können, dieselbe Raumzeit beschreiben. Scheinbar ist es zugelassen, in demselben spektralen Quadrupel Hamilton-Operatoren zu verwenden, die verschiedenen Metriken entsprechen. Wegen der geforderten Gruppoid-Struktur von G ist dies aber nicht der Fall. Es muss ja möglich sein beliebige unitäre Äquivalenzen $U(A, B)$ und $U(C, D)$ zu verknüpfen, wenn immer die Algebren B und C identisch sind. (Es gibt natürlich die Möglichkeit, dass zwei nichtäquivalente Hamilton-Operatoren "nebeneinander" in G existieren, in dem Sinne, dass das spektrale Quadrupel in die direkte Summe zweier spektraler Quadrupel zu den entsprechenden Raumzeiten zerlegt werden kann. Diesen Fall kann man leicht ausschließen, wenn man die Irreduzibilität der Darstellung der Daten des spektralen Quadrupels verlangt, was man natürlich auch bei spektralen Tripeln implizit tut.)

Bemerkung 8.2.5. Wenn man voraussetzt, dass man die Raumzeit-Mannigfaltigkeit aus den Daten des spektralen Quadrupels rekonstruiert hat, stellt sich immer noch die Frage nach der Rekonstruktion der Metrik. Der vollständige Dirac-Operator auf der Raumzeit steht auf \mathcal{H} ja nicht zur Verfügung, beziehungsweise ist dort als $m 1$ gegeben. (Selbst wenn er bekannt wäre, wäre die Aufgabe keineswegs einfach. Die
Connesche Abstandsformel funktioniert wegen des involvierten Supremums nämlich nur für eine euklidische Signatur der Metrik.)

Es entspricht aber ohnehin sehr viel mehr der Philosophie der spektralen Quadrupel, sich zur Lösung dieses Problems an die Quantenfeldtheorie zu erinnern.

Ein reiner Zustand auf der Algebra \mathcal{A}_0 (ein Punkt auf Σ_0) wird durch eine δ-Distribution beschrieben. Bei der Zeitentwicklung verschmiert sich diese Wellenfunktion dann in den gesamten Lichtkegel. (Diese Aussage gilt falls $m \neq 0$ ist. Für masselose Teilchen verschmiert sie sich nur auf dem Rand des Lichtkegels.) Sie ist zu späteren Zeiten t also kein Eigenzustand der entsprechenden Algebren $\mathcal{A}_t = C(\Sigma_t)$ mehr. Da die Algebren $\mathcal{A}_1, \mathcal{A}_0$ unterschiedliche Eigenzustände haben, kommunizieren sie nicht untereinander. Dies ist der Grund für die entsprechende Forderung in I., die sicherstellt, dass es überhaupt eine beobachtbare Zeit gibt. (Für masselose Teilchen in $1 + 1$ Dimensionen, wo der Rand des Lichtkegels eindimensional ist, bleiben sie aber zu allen Zeiten Eigenzustände, weil der zum Verschmieren notwendige Raum fehlt. Man muss sich dann aber auch fragen, wie man in einer solchen $(1 + 1)$-dimensionalen Welt, in der nur masselose Teilchen existieren, überhaupt Abstände messen will.)

Aus den Kommutatoren von Funktionen zu verschiedenen Zeiten lässt sich dann der vollständige Lichtkegel, und somit die Metrik rekonstruieren. Am einfachsten sieht man dies, wenn man die Kommutatoren von $f_0 \in C(\Sigma_{t_0})$ und $g_1 \in C(\Sigma_{t_1})$ nach Potenzen von $(t_0 - t_1)$ entwickelt:

$$
[f_0, g_1] = - N^2 (\partial_i f_0) g^{ik} \Omega_{kl} g^{lj} (\partial_j g_l) (t_0 - t_1)^2 + 4EmN^3 g^{ij} (\partial_i f_0) (\partial_j g_1) (t_0 - t_1)^3 + \text{weitere Terme in } O((t_0 - t_1)^3).
$$

Die Funktionen werden dabei auf der Hyperfläche Σ_{t_0} ausgewertet (g_1 muss dazu natürlich zuerst dorthin transportiert werden), und Ω_{kl} ist die Darstellung auf den Spinoren des entsprechenden Generators von Drehungen in Σ_{t_0}. Wenn man Erwartungswerte dieses Operators in geschickt gewählten Zuständen betrachtet, kann man (zumindest in niedrigen Dimensionen) aus den einzelnen Ordnungen dann die räumliche Metrik g^{ik} auf Σ_{t_0} und die Lapse-Funktion N bestimmen. Zur vollständigen Rekonstruktion der Metrik der Raumzeit benötigt man aber noch den Shift-Vektor N^i. Diesen kann man dann aus

$$
i[f_0, H] = NEm \gamma_0 (\partial^i f_0) - N^i \partial_i f_0
$$

gewinnen.

Der Kommutator von Funktionen zu verschiedenen Zeiten ist mindestens von zweiter Ordnung in $(t_0 - t_1)$, weil der Hamilton-Operator ein Differentialoperator erster Ordnung ist. Interessanterweise ist die zweite Ordnung aber von der Masse, also der Längenskala, unabhängig. Man kann aus dieser Ordnung also nur auf die konforme Struktur der Raumzeit schließen, was man auch an den auftauchenden Erzeugern von Drehungen erkennen kann.

Wenn man homogene Räume, wie den de-Sitter-Raum beschreiben will, also Räume auf die eine Lie-Gruppe wirkt, dann ist es nahe liegend, eben diese Gruppe als G zu wählen. Dies führt auf den Begriff des symmetrischen spektralen Quadrupels.
Definition 8.2.6. Ein symmetrisches spektrales Quadrupel ist ein spektrales Quadrupel mit den folgenden zusätzlichen Eigenschaften:

2. Die Untergruppe K von G, welche A_0 invariant lässt, ist maximal kompakt.

3. Die Operatoren E und γ (korrespondierend zu A_0) kommutieren mit allen Elementen aus K.

Wählt man zum Beispiel $G = SL(2, \mathbb{R})$ und $A_0 = C(S^1)$ so existiert eine einparametrigige Schar von spektralen Quadrupeln. Diese beschreiben alle die $1+1$-dimensionale de-Sitter-Raumzeit, also die durch die Gleichung

$$x_0^2 - x_1^2 - x_2^2 = -R^2$$

bestimmte Untermannigfaltigkeit des $(2+1)$-dimensionalen Minkowski-Raums. Sie ist ein homogener Raum unter der $(2+1)$-dimensionalen Lorentz-Gruppe $SL(2, \mathbb{R})$. Der zusätzliche freie Parameter lässt sich als Zeitursprung interpretieren. Seine Anwesenheit ist also darauf zurückzuführen, dass G nicht groß genug gewählt wurde. Andererseits ist G offenbar viel kleiner, als man es naiv erwarten würde.

Es wird auch nicht sehr schwierig sein höherdimensionale Beispiele auszuarbeiten. Ähnlich wie im euklidischen Fall erweisen sich die Symmetrien auch hier als wertvolles Hilfsmittel, mit dessen Hilfe viele Spielzeugmodelle konstruiert werden können. Ob man die angesprochenen Probleme dabei lösen kann, ist im Moment nur eine begründete Hoffnung.

Eine alternative Möglichkeit sich der Lösung des Kovarianz-Problems anzunähern, besteht darin, ganz auf den Hamilton-Formalismus zu verzichten, und statt dessen eine Formulierung im Geist der spektralen Triple zu suchen. Dann stellt sich natürlich wieder die Frage des zu wählenden Hilbertraums. Das übliche unter der Lorentzgruppe invariante Skalarpunkt auf den Spinoren über einer Lorentzschen Spin-Mannigfaltigkeit ist nämlich entartet und kann deshalb nicht zur Definition eines Hilbertraums herangezogen werden. Weil das Spin-Bündel über einer solchen Mannigfaltigkeit aber ein Vektorbündel von endlichem Rang ist, existiert ein natürlihes Skalarpunkt, und der Hilbertraum \mathcal{H} ist dann als Raum der quadratintegrablen Schnitte bezüglich dieses Skalarpunkt, das natürlich nicht invariant ist, gegeben. Wenn man, wie es wegen der sicher zu stellenden Zeitorientierbarkeit ohnehin unvermeidlich ist, den Zeitvektor E in die Daten der gesuchten Beschreibung aufnimmt, so kann man das invariante Skalarpunkt als

$$(\psi, \phi) = \langle \psi | E | \phi \rangle$$

aus diesem Skalarpunkt rekonstruieren (E entspricht ja γ_0). Auf \mathcal{H} kann man die Algebra $C(M)$ der Funktionen auf der Raumzeit sowie den Dirac-Operator darstellen. Letzterer ist bezüglich des nicht-invarianten Skalarpunkts natürlich nicht selbstadjungiert (sondern “E-selbstadjungiert”), und auch die von der Clifford-Algebra herrührenden (Anti-)Kommutationrelationen müssen an die neue Signatur der Metrik angepasst werden. Das stellt aber kein großes Problem dar, im Gegensatz zur Charakterisierung

Der grosse Vorteil dieses Projektes liegt in der kovarianten Formulierung. Es ist deshalb im Vergleich mit den spektralen Quadrupeln ein sehr wichtiger, komplementärer Zugang, der bei der Lösung vor allem dieses Problems eine große Hilfe sein wird.

Es ist auch möglich (nichttriviale) spektrale Quadrupel zu konstruieren, bei denen die Algebren \mathcal{A}_t endlichdimensional sind, also insbesondere solche, bei denen die Hyperflächen Σ_t endliche Gitter sind.

Für meinen Geschmack ist diese Vorstellung etwas zu spekulativ, aber sie ist natürlich durchaus der Untersuchung wert, und die Sprache der Nichtkommutativen Geometrie ist für diese Aufgabe wie maßgeschneidert.

Ach ja. Eines noch:
Un´ wenn de dann im Sarje liechst, un´ zu Grabe getrachen wirst, da frachste dir:
Un´ wozu denn nu´ det janze ?

frei nach Kurt Tucholsky
8.2 Spektrale Quadrupel oder: Die Zeit wird es richten
Kapitel 9

Diskretes Trommeln

I jumped, but didn’t panic
cuz jah is my quantum mechanic

Adwin Brown

Diskrete spektrale Tripel sind wesentlich leichter zu überblicken. Der Dirac-Operator ist dann durch eine endlichdimensionale Matrix mit einer durch die Axiome für spektrale Tripel festgelegten Blockstruktur gegeben, und die Identifikation der echten Freiheitsgrade kann wenn auch nicht ganz allgemein, so doch wenigstens in konkreten Beispielen durchgeführt werden. Wie bereits angesprochen, reichen die unitären Äquivalenzen von spektralen Tripeln, also die unitären Operatoren auf \(\mathcal{H} \), welche mit den beiden Wirkungen der Algebra vertauschen, nicht aus, um alle unabhängigen Blöcke im Dirac-Operator zu diagonalisieren. Diese Aussage bleibt weiterhin gültig, wenn zusätzlich auch Diffeomorphismen, also die Automorphismen der Algebra, abdividiert werden. Auch in diesem nulldimensionalen Fall werden im Allgemeinen also neben den Eigenwerten des Dirac-Operators noch weitere Freiheitsgrade existieren. Ein einfaches Beispiel liefert die Algebra \(\mathbb{C} \oplus M_2(\mathbb{C}) \) mit dem spektralen Tripel zu

\[
q = N \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}, \quad N \geq 2
\]
Die Darstellungen des Dirac-Operators und der Algebra sind dann wie gehabt
\[
D = \begin{pmatrix}
0 & M & 0 \\
M^* & 0 & M^t \\
0 & M & 0
\end{pmatrix}, \quad \mathcal{A} \ni a \mapsto \begin{pmatrix}
z \mathbb{1}_2 \otimes \mathbb{1}_N & 0 & 0 \\
0 & z \mathbb{1}_2 \otimes \mathbb{1}_N & 0 \\
0 & 0 & \lambda \otimes \mathbb{1}_N
\end{pmatrix},
\]
und \(M : \mathcal{H}_{11} \to \mathcal{H}_{12} \) ist diesmal eine beliebige \((2N \times 2N)\)-Matrix. Die unitären Transformationen, welche mit der Rechts- und der Links-Wirkung der Algebra kommutieren, wirken auf \(M \) gemäß \(M \to (\mathbb{1}_2 \otimes W)MV \), mit \(V \in U(2N) \), \(W \in U(N) \), denn in \(\mathcal{H}_{12} \) wirkt die Algebra als \(M_2(\mathbb{C}) \) von links.

Die inneren Automorphismen der Algebra sind durch Elemente \(u \) aus \(SU(2) \) gegeben, unter welchen \(M \) als \(M \to Mu \otimes \mathbb{1}_N \) transformiert.

Da \(u \otimes \mathbb{1}_N \) und \(\mathbb{1}_2 \otimes W \) miteinander vertauschen, hätte man zur Diagonalisierung von \(M \) also nur Transformationen der Form
\[
M \to VM (u \otimes W)
\]
zur Verfügung. Für eine allgemeine (nichtsinguläre) \((2N \times 2N)\)-Matrix wird man zur Diagonalisierung aber auch zwei beliebige unitäre \((2N \times 2N)\)-Matrizen benötigen und nicht jede solche Matrix ist von der Form \(u \otimes W \). Es ist natürlich keineswegs klar, dass die zusätzlichen Freiheitsgrade in \(D \) auch einen Einfluss auf die Metrik haben. Gleich wird gezeigt, dass diese Parameter tatsächlich auch in der spektral invarianten Wirkung auftauchen, und bei der Formulierung eines Pfadintegrals auf endlichdimensionalen Räumen werden diese (dann im Allgemeinen unendlich vielen) zusätzlichen Freiheitsgrade sicher ein großes Problem darstellen.

In jedem Fall wird man über bestimmte Blöcke in \(D \) (einige davon bleiben ja auch nach der Abdivision aller Symmetrien vollkommen beliebig) integrieren müssen. Da es sich dabei um Matrizen handelt, landet man in der Regel bei sehr speziellen, und wie sich zeigt, ausgesprochen komplizierten Matrixmodellen.

Es ist zweifellos zu bezweifeln, dass man aus einer solchen, extrem vereinfachten Situation sehr viel lernen können wird, das für die Quantisierung der Allgemeinen Relativitätstheorie von Nutzen sein könnte. Schließlich gibt es weder Zeit, noch einen anständigen Raum. Zumindest aber kann man einige konzeptionelle Fragen klären und... auf Überraschungen hoffen.

Andererseits sind Matrixmodelle aber auch für sich genommen ein interessantes und modernes (modisches?) Thema (siehe [RMTrev] und darin angegebene Referenzen). Es würde den Rahmen dieser Arbeit sprengen, auf die vielfältigen Anwendungen von Matrixmodellen einzugehen, oder auch nur zu versuchen ihre nicht weniger mannigfachen Beziehungen zu fast allen Gebieten der Physik darzulegen.

welche im thermodynamischen Limes $N \to \infty$ einen Phasenübergang aufweisen, äquivalent zu zweidimensionaler euklidischer Quantengravitation [diF]. In Anbetracht der großen Zahl von Anwendungen wurden auch viele Rechentechniken für Matrixmodelle entwickelt. Zum Beispiel sind viele solcher Modelle integrierbar [Meh] und können vollständig gelöst werden. Inwiefern das aber für die Arbeit mit Theorien, die bei der Quantisierung von diskreten spektralen Tripeln entstehen, von Nutzen sein wird, ist gegenwärtig noch unklar. Die physikalische Interpretation dieser Matrixmodelle unterscheidet sich nämlich grundlegend von der Sichtweise in allen oben genannten Beispielen. Man wird daher an ganz anderen Größen interessiert sein, was andererseits aber auch auf neue Erkenntnisse hoffen lässt. Darüber hinaus stößt man zumeist auf sehr viel kompliziertere Modelle, als die in der Literatur diskutierten. Interessant ist in diesem Zusammenhang auch die Diskussion der verschiedenen “thermodynamischen Grenzwerte”. Für ein spektrales Tripel q_{ij} zu einer Algebra

$$\mathcal{A} = \bigoplus_{i=1}^{K} M_{n_i}(\mathbb{C})$$

cann man nämlich entweder einige der q_{ij} oder auch einige der n_i nach Unendlich schicken. Darüber hinaus kann man aber auch den Kontinuumslimes $K \to \infty$ (zum Beispiel für den K-Punkt-Raum $n_i = 1 \forall i$) betrachten. In der Folge werden nur äußerst einfache Modelle angesprochen, und auch diese werden nur sehr oberflächlich behandelt. Die grundlegenden Ideen und Konzepte können aber auch an diesen Beispielen verdeutlicht werden.

9.1 Das invariante Maß und die Rolle der Algebra

Aus den Andeutungen weiter oben sollte nichtsdestoweniger klar geworden sein, dass im Folgenden für ein gegebenes diskretes spektrales Tripel (\mathcal{A}, q) eine Zustandssumme

$$Z = \mathcal{N} \int \mathcal{D} D \, e^{-S(D)}$$

(9.1)
definiert werden soll. Die (klassisch) spektral invariante Wirkung $S(D)$ kann auf endlichdimensionalen Hilberträumen allgemein in der Form

$$S(D) = \sum_{k=-\infty}^{\infty} t_k \, \text{tr}D^{2k}$$

$$\lim_{x \to \infty} S(x) = +\infty$$

(9.2)
angesetzt werden, denn $\text{tr}D^{2k+1} = 0$ weil D mit der Graduierung γ antikommutiert. Das Analogon der klassischen Einstein-Hilbert-Wirkung S_{EH} wäre $\text{tr}D^{2-d} = \text{tr}D^2$, und weil diese zugleich besonders einfach zu handhaben ist, wird im Folgenden natürlich (fast) ausschließlich das dabei in (9.1) entstehende “Gausssche Modell” diskutiert. Es gibt allerdings gute Gründe in dem Ansatz für (9.1) jede beliebige (wohldefinierte) klassische Wirkung zuzulassen. Das wird gleich ausführlicher herausgearbeitet. \mathcal{N} ist eine Normierungskonstante, der im Folgenden ausser ihrer bloßen Anwesenheit keinerlei Beachtung geschenkt werden wird. Im Hinblick auf eine möglicherweise notwendige Störungsrechnung, wird sie so gewählt sein, dass $Z = 1$ für $S = \frac{1}{4}\text{tr}D^2$ ist. (Für dass Gausssche Modell ist sie aber vollkommen bedeutungslos.)
9.1 Das invariante Maß und die Rolle der Algebra

Da der Dirac-Operator an die Spinoren im Hilbertraum koppelt, ist es auch sinnvoll den Beitrag dieser 'Fermionen' zu berücksichtigen. In Abwesenheit des Konzepts der Kausalität gibt es aber keinen zwingenden Grund, die Fermi-Statistik zu verwenden. In Anlehnung an den klassischen Fall erscheint dies aber sinnvoll. Wie üblich definiert man dann

\[\int \mathcal{D}\psi \overline{\mathcal{D}\psi} e^{-\text{tr}(\psi, D\psi)} = \text{det} D, \quad (9.3) \]

und als alternative Zustandssumme könnte man nun auch

\[Z_F = N' \int \mathcal{D} D e^{-W(D)} \quad (9.4) \]

mit der effektiven Wirkung

\[W(D) = S(D) - \text{tr}(\ln D) \]

versuchen. In praktischen Beispielen verschwindet \(\text{det} D \) aber häufig für alle erlaubten Dirac-Operatoren des betreffenden spektralen Tripels, so zum Beispiel für \(\mathbb{C} \oplus M_2(\mathbb{C}) \) und

\[q = N \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}, \]

weil \(D \) dann als

\[D = \begin{pmatrix} 0 & m & 0 \\ m^* & 0 & m^t \\ 0 & \overline{m} & 0 \end{pmatrix}, \quad m \in M_N(\mathbb{C}) \]

gegeben ist, und wenn man die ersten sowie die letzten \(N \) Spalten dieser Matrix betrachtet, ist sofort klar, dass diese nicht alle linear unabhängig sein können. Vor allem aber verschwindet \(\text{det} D \) automatisch, wenn \(\dim \mathcal{H} \) ungerade ist. Aus \(D \gamma = -\gamma D \) folgt nämlich \(\text{det} D = (-1)^{\dim \mathcal{H}} \text{det} D \). Für eine sinnvolle Definition der fermionischen Wirkung wird man dann die Determinante von \(D \) nur über das Komplement des Kerna von \(D \) bilden. In der Folge wird, der Einfachheit halber, den damit verbundenen Problemen durch Vermeidung entsprechender Beispiele (mit einer Ausnahme) Rechnung getragen.

In den übrigen Fällen ist \(\text{det} D \) in der Regel (aber nicht immer) positiv, so zum Beispiel für das folgende spektrale Tripel zur Algebra \(\mathbb{C} \oplus \mathbb{C} \):

\[q = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}. \]

Der allgemeinste Dirac-Operator ist dann von der Form

\[D = \begin{pmatrix} 0 & m_1 & m_2 & 0 \\ m_1 & 0 & 0 & m_1 \\ m_2 & 0 & 0 & m_2 \\ 0 & \overline{m_1} & \overline{m_2} & 0 \end{pmatrix}, \quad m_1, m_2 \in \mathbb{C}. \]
In diesem Fall ist \(\det D = |m_1 m_2 - m_1 m_2|^2 \geq 0 \). Der fermionische Beitrag führt in diesem Beispiel also zu einer abstoßenden Wechselwirkung der Eigenwerte. Zu diesem Beispiel sei noch angemerkt, dass man die relative Phase von \(m_1 \) und \(m_2 \) natürlich nicht durch unitäre Äquivalenzen wegttransformatieren kann. Diese müssen ja mit der Algebra und mit der Realitätsstruktur \(J \) verträglich, weswegen auf den Räumen \(\mathcal{H}_i \) keine Phasentransformationen gestattet sind. Hier hätte die allgemeinste solche Transformation \(U \) die Gestalt

\[
U = \text{diag}(e^{i\theta}, 1, 1, e^{-i\theta}).
\]

und mit ihrer Hilfe könnte man dann zum Beispiel \(m_1 \) als nichtnegative reelle Zahl wählen.

Die erste wichtige Frage, die es auf der Suche nach (9.1) zu klären gilt, ist die nach dem richtigen Definitionsbereich des Integrals. Es ist sicher falsch über den Raum aller erlaubten Dirac-Operatoren (bei festgehaltenem \((\mathcal{A}, q) \)) zu integrieren, weil physikalische Größen nur von der unitären Äquivalenzklasse des spektralen Tripels abhängen können. So ist zum Beispiel die Metrik

\[
d_D(\xi_1, \xi_2) = \sup_{\|[D, a]\| \leq 1} \{||\xi_1(a) - \xi_2(a)||\}
\]

(9.5)

für Operatoren \(D \) und \(D' = UDU^* \) die gleiche (wenn \(U \) mit der Algebra kommutiert), denn dann ist \(||[D', a]|| = ||U[D, a]U^*|| = ||[D, a]|| \).

Folglich sollte nur über unitäre Äquivalenzklassen von Dirac-Operatoren integriert werden. Betrachtet man das Modell als nulldimensionale Version von Quantengravitation, so ist es sicher notwendig nur diffeomorphismusinvariante Größen als physikalische Freiheitsgrade zu betrachten. Die obige Metrik ist ja kovariant in dem Sinne, dass für \(u \in \mathcal{A} \) stets

\[
d_{u^* D u} (\xi_1, \xi_2) = d_D (u\xi_1, u\xi_2)
\]

(9.6)

gilt. Für eine entsprechend abgeänderte Koordinatenwahl im Raum der reinen Zustände ergibt sich also die gleiche Metrik für \(u^* D u \) und \(D \), was natürlich auch so sein muss.

\textbf{Es sollte also nur über Äquivalenzklassen von Dirac-Operatoren unter Diffeomorphismen und unter unitären Äquivalenzen summiert werden.}

Wenn die Äquivalenzklassen von Dirac-Operatoren in einem konkreten Beispiel gefunden sind, wird man im nächsten Schritt nach einem \textit{invarianten} Maß auf dem so konstruierten Konfigurationsraum suchen. Dabei taucht dann die nächste, diesmal aber weniger leicht und klar zu beantwortende Frage auf: Worunter invariant ?

Die zu quantisierende klassische Wirkung ist spektral invariant, es erscheint daher nahe liegend, ein spektral invariantes Maß zu wählen. Ein solches ist allgemein von der Form

\[
Z = N \int \prod_k q(\lambda_k) e^{S(\lambda_k)}
\]
9.1 Das invariante Maß und die Rolle der Algebra

wobei \(\lambda_k \) die nicht (notwendigerweise) verschwindenden Eigenwerte des Dirac-Operators bezeichnet. Das sieht nicht gerade spannend aus, und wenn nun nicht ein Problem auftreten würde, sollte man das Projekt wohl besser an dieser Stelle abbrechen. Man muss sich aber fragen, was man eigentlich mit dieser Zustandssumme ausrechnen möchte. Es wurde ja bereits mehrfach betont, dass sich nicht alle Observablen des Gravitationsfeldes als Funktionale der Eigenwerte des Dirac-Operators schreiben lassen, und die Beispiele des folgenden Abschnitts werden dies noch einmal verdeutlichen.

Es gilt also in jedem Fall eine solche spektrale invariante Wirkung in ein Integral über die \textit{diffeomorphismusinvarianten} Freiheitsgrade umzuschreiben. Dazu muss man natürlich als Erstes die Eigenwerte des Dirac-Operators als Funktionale dieser Observablen ausdrücken, was, wie man sich sicher denken kann, eine äußerst anspruchsvolle Herausforderung darstellt. Man muss sich aber ohnehin fragen, ob es sinnvoll ist, auf einer spektralen Invarianz des Maßes zu bestehen, wenn man so wissend vor hat, die Erwartungswerte von Größen zu berechnen, welche nicht spektral invariant sind. Aus diesem Grund werden in der Folge auch Modelle untersucht, die zwar diffeomorphis musinvariant aber nicht spektral invariant sind.

Unabhängig davon, für welche der beiden möglichen Invarianzgruppen man sich entschieden hat, gilt es dann aber, ein invariantes Maß \(\mathcal{D} D \) zu finden. Hier greift, insofern man eine geeignete "Eichfixierung" findet, die Methode von Faddeev und Popov – und dies war natürlich der Grund, warum wir uns für den Pfadintegral-Formalismus entschieden haben. Die Eichfixierung sollte nach Möglichkeit so gewählt sein, dass man die Faddeev-Popov-Determinante berechnen oder zumindest eine nützliche Integ raldarstellung mit entsprechenden Geistfeldern finden kann. Im Gegensatz zu endlichdimensionalen Eichtheorien ist es hier aber in (wenigen) einfachen Beispielen möglich konkrete Repräsentanten der einzelnen Äquivalenzklassen und das zugehörige invariante Maß anzugeben. In diesem Fall kann man das Pfadintegral natürlich als Summe über diese Repräsentanten formulieren.

Wenn man an “gewöhnliche” physikalische Systeme und deren Pfadintegral-Quantisierung denkt, mag es vielleicht verwundern, warum wir bisher fast ausschließlich die Frage diskutiert wurde, \textit{welches} Maß für die Definition der Zustandssumme verwendet werden soll. Üblicherweise verwendet man zur Integration von \(e^{-S} \) das – unter kanonischen Transformationen invariante – Maß \(\mathcal{D} q \mathcal{D} p \), wodurch dann auch der korrekte klassische Limes der so definierten Quanten-Theorie sichergestellt ist. Bei den hier betrachteten Systemen gibt es aber eine Zeit, beziehungsweise, dazu äquivalent, es gibt keinen Phasenraum und dementsprechend auch keine ausgezeichnete symplektische Struktur.

Man könnte natürlich versuchen, einen Phasenraum als Raum der klassischen Lösungen des Systems zu definieren. Für gegeben gewählte Wirkungen hat dieser dann die Struktur einer Kähler-Mannigfaltigkeit, so dass man auf eine symplektische Struktur zurückgreifen kann [Rov]. Das macht aber nur für Wirkungen Sinn, die nicht spektral invariant sind. Weil sich spektral invariante Wirkungen gemäß \(S(D) = \sum_k P(\lambda_k) \) als Summe von Polynomen der Eigenwerte schreiben lassen, ist der Raum der (unitären Äquivalenzklassen von) Lösungen für spektral invariante Wirkungen nämlich nulldimensional, im Extremfall ein einziger Punkt.

Aus diesem Grund scheint für diskrete, spektral invariante Theorien, die hier verwendete statistische Zustandssumme (über alle Konfigurationen und nicht nur über Lösungen) angebracht. Es wäre im übrigen auch nicht klar, was unter einem klassischen

Bevor es nun an die konkreten Beispiele geht, sollte noch darauf hingewiesen werden, dass bei einem diffeomorphismusinvarianten Maß die Algebra in Form der inneren Automorphismen in dessen Definition eingeht. Da man dabei aber alle Diffeomorphismen abdividiert, wird die Algebra aus dem Endresultat allein nicht mehr zu rekonstruieren sein. Für die Interpretation der Theorie wird also die Angabe der Algebra (oder der Schnittoform q) vonnöten sein, auch wenn diese nicht direkt in die Dynamik eingeht. Das ist natürlich für alle Quantenfeldtheorien typisch, bei denen ja stets die Algebra der Observablen (hier im Wesentlichen die Abstände reiner Zustände über der Algebra) angegeben werden muss.

9.2 Ein, zwei Quantenpunkte

Mehr als zwei Punkte braucht es nicht, um einen Abstand definieren zu können, und so lange es nicht mehr Punkte gibt, können auch keine Probleme mit Diffeomorphismen auftreten. Der Abstand der beiden Punkte – eine andere sinnvolle Größe gibt es ohnehin nicht – ist nämlich invariant unter allen (beiden) Diffeomorphismen. Das einfachste spektrale Tripel (überhaupt), für das ein Dirac-Operator zur Algebra $\mathbb{C} \oplus \mathbb{C}$ existiert, wird durch

$$q = N \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix},$$

definiert. Der Raum der Dirac-Operatoren kann dann durch

$$D = \begin{pmatrix} 0 & m & 0 \\ m & 0 & m \\ 0 & \bar{m} & 0 \end{pmatrix}, \quad m_1 \in M_N(\mathbb{C}),$$
Ein, zwei Quantenpunkte

parametrisiert werden. Die noch abzudividierenden unitären Äquivalenzen sind durch eine orthogonale Matrix O auf \mathcal{H}_1 (der ja invariant unter J ist), sowie einer unitären Matrix U auf \mathcal{H}_2 gegeben. Die erste Aufgabe besteht nun im Auffinden von Repräsentanten der Äquivalenzklassen unter den Transformationen

$$m \rightarrow O m U^*.$$

Für $N = 1$ ist das ein Leichtes, dann ist m eine komplexe Zahl, deren Phase durch U eliminiert werden kann, und die Äquivalenzklassen sind durch eine nichtnegative reelle Zahl bestimmt. Für $N \geq 2$ ist das Problem schon schwieriger. Mit Beschränkung der Allgemeinheit sei hier nur der Fall $N = 2$ betrachtet. Der Abstand der beiden Punkte ergibt sich allgemein als

$$d(1,2) = \frac{1}{\|m\|},$$

und hängt offenbar nur von dem größten charakteristischen Wert von m ab. Als reines Modell für Gravitation interpretiert, enthält das System in diesem Fall folglich überzählige Freiheitsgrade.

Bemerkung 9.2.1. Als Teilchenmodell ließe es sich natürlich interpretieren. In diesem Fall entsprechen die Elemente aus \mathcal{H}_1 rechtshändigen Majorana-Fermionen, und dies macht plausibel, warum auf ihnen nur $O(N)$-Transformationen zulässig sind. Die linkshändigen Elemente aus \mathcal{H}_2 tragen eine $U(1)$-Ladung: die Eichtransformationen sind ja durch $\psi \mapsto u\psi u^*$ gegeben, und diese wirkt dann als $e^{i(\varphi_i - \varphi_j)}$ auf ψ_{ij}.

Für $N = 1$, wenn man m als nichtnegative ganze Zahl wählt, hat D die Eigenwerte $0, \pm 2m$ und der Kern von D wird von dem festen Vektor $(1, 0, -1)^T$ aufgespannt. Vernachlässigt man diesen, so ist die fermionische Determinante als $\det = e^{-S(\lambda)}$ gegeben. Da D nur einen unabhängigen Eigenwert $\lambda = 2m$ hat, ist das invariante Maß in diesem Fall klar:

$$Z = N \int_0^\infty d\lambda \ e^{-S(\lambda)},$$

beziehungsweise

$$Z_F = N' \int_0^\infty d\lambda \ \lambda^2 \ e^{-S(\lambda)}.$$

Beschränkt man sich auf $S(\lambda) = t\lambda^2$, so ist $N = \sqrt{2\pi t}$, $N' = \sqrt{8\pi t^3}$. Der wesentliche Unterschied zwischen Z und Z_F zeigt sich, wenn man den Ensemble-Mittelwert des Abstandes $d(1,2)$ berechnet (was sollte man auch sonst berechnen?).

Lemma 9.2.2. Für jede polynomiale Wirkung $S(D) = \sum_{k=0}^n t_k \lambda^{2k}$ ist

$$\langle d(1, 2) \rangle = N \int_0^\infty d\lambda \ \frac{1}{\lambda} \ e^{-S(\lambda)} = \infty.$$
Ist hingegen zusätzlich $t_{-1} \neq 0$, so ist $\langle d(1, 2) \rangle$ endlich. Demgegenüber ist

$$\langle d(1, 2) \rangle_F = N \int_0^\infty \frac{2}{\lambda} \lambda^2 e^{-S(\lambda)}$$

immer endlich. Für $S = t\lambda^2$ ist $\langle d(1, 2) \rangle_F = \sqrt{2\pi t}$.

Ein Beweis dürfte sich erübrigen. Damit ist nun auch klar, wozu Terme wie $t_{-1} \lambda^{-2}$ taugen: Sie regularisieren den Erwartungswert des Abstandes. (Dies ist natürlich nicht unbedingt erforderlich. Es ist aber interessant, dass man es mit einem Term $\text{tr}D^{-2}$ – der in 4 Dimensionen die Einstein-Hilbert-Wirkung liefert – erreichen kann.) Offenbar hat die Ankopplung von Fermionen den gleichen Effekt. Diese führt zu einer effektiven Abstoßung der Eigenwerte (beziehungsweise zu einer gegenseitigen Anziehung der Punkte), die stark genug ist, einen endlichen Abstand zu erzwingen.

Ansonsten gibt dieses Modell aber nicht viel her. Der Fall $N > 1$ ist schon etwas interessanter.

Bevor es an die Ausarbeitung der diffeomorphismusinvarianten Freiheitsgrade geht, sei noch kurz ein recht interessantes Analogon des obigen Lemmas diskutiert. Es ist eigentlich erst bei den Beispielen im nächsten Abschnitt relevant, scheint aber besser hierher zu passen. Bei den angesprochenen Beispielen kann man die Massenmatrix im Dirac-Operator vollständig diagonalisieren, und ihre charakteristischen Werte stimmen mit den Eigenwerten des Dirac-Operators überein. Insbesondere ist der Abstand $d(1, 2)$ der beiden Punkte als das Inverse des größten charakteristischen Werts gegeben. Betrachtet wird nur der Fall $N = 2$; eine analoge Aussage gilt aber für alle $N > 1$ (dann ist der Beweis aber weniger elegant).

Lemma 9.2.3. Es ist unter den oben genannten Voraussetzungen

$$d(1, 2) = N \int_0^\infty \int_0^\infty d\lambda_1 d\lambda_2 \frac{1}{\sup\{\lambda_1, \lambda_2\}} e^{-t(\lambda_1^2 + \lambda_2^2)} = \frac{\sqrt{2t}}{\sqrt{\pi}} \ln \left(\frac{\sqrt{2t} - \sqrt{t}}{\sqrt{2t} + \sqrt{t}} \right) < \infty.$$
9.2 Ein, zwei Quantenpunkte

Beweis:

\[
 d(1, 2) = 2N \int_0^\infty d\lambda_2 \int_\lambda_2^\infty d\lambda_1 \frac{1}{\lambda_1} e^{-t(\lambda_1^2 + \lambda_2^2)}
\]

\[
 = 2N \int_0^\infty dt \int_0^\infty d\lambda_2 \int_\lambda_2^\infty d\lambda_1 \lambda_1 e^{-t\lambda_2^2 - \tau \lambda_1^2}
\]

\[
 = \frac{2t}{\pi} \int_0^\infty d\tau \frac{1}{\tau} \int_0^\infty d\lambda_2 e^{-(\tau + t)\lambda_2^2}
\]

\[
 = \frac{\sqrt{2t}}{\sqrt{\pi}} \int_0^\infty d\tau \frac{1}{\tau \sqrt{\tau + t}}
\]

\[
 = \frac{\sqrt{2t}}{\sqrt{\pi}} \ln \left(\frac{\sqrt{2t} - \sqrt{t}}{\sqrt{2t} + \sqrt{t}} \right).
\]

Mit deutlicher Beschränkung der Allgemeinheit sei (weiterhin) nur der Fall \(N = 2 \) betrachtet. Als Erstes sollten Repräsentanten der Äquivalenzklassen unter den Transformationen

\[
 m \rightarrow OmU
\]

(mit \(m \) dem einzigen unabhängigen Block im Dirac-Operator, \(O \) einer orthogonalen, \(U \) einer unitären Matrix) gefunden werden. Die Lösung dieses Problems beschreibt der folgende

Satz 9.2.4. Sei \(m \) eine beliebige nichtsinguläre \((2 \times 2)\)-Matrix. Dann existiert genau eine positiv definite, hermitesche Matrix \(C \), mit rein imaginärem \(C_{12} = -C_{21} \),

\[
 C = \begin{pmatrix} a & i c \\ -ic & b \end{pmatrix}, \quad a, b, c \in \mathbb{R}, \quad a, b \geq 0, \quad ab \geq c^2,
\]

sowie eine unitäre Matrix \(U \) und eine orthogonale Matrix \(O \), so dass

\[
 m = OCU.
\]

Beweis: Das (technische) Kernstück des Beweises ist folgende kleine Rechnung:

\[
 \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x & z \\ \bar{z} & y \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \begin{pmatrix} X & Z \\ \overline{Z} & Y \end{pmatrix}
\]

mit

\[
 X = x \cos^2 \alpha + y \sin^2 \alpha + 2 \sin \alpha \cos \alpha \Re z
\]

\[
 Z = (x - y) \sin \alpha \cos \alpha + (\cos^2 \alpha - \sin^2 \alpha) \Re z + i \Im z
\]

\[
 Y = x \cos^2 \alpha + y \sin^2 \alpha - 2 \sin \alpha \cos \alpha \Re z.
\]
Insbesondere bleibt also der Imaginärteil des Nebendiagonalelements einer hermiteschen \(2 \times 2\)-Matrix invariant unter orthogonalen Transformationen.

Der Beweis verläuft nun in zwei Schritten:

Existenz der Zerlegung \(m = OCU\)

Jede nichtsinguläre Matrix \(m\) kann spektral als

\[m = TU \]

mit positiv definitem, hermiteschem \(T\) zerlegt werden. Zu zeigen ist also, dass eine orthogonale Matrix \(O\) und ein \(C\) der oben beschriebenen Form mit \(T = OCO^\dagger\) existieren (\(O^\dagger U\) ist unitär).

Alternativ genügt es natürlich auch die Existenz einer orthogonalen Matrix zu beweisen, mit deren Hilfe man den Realteil des Nebendiagonalelementes von \(T\) wegttransforieren kann, so dass \(T\) auf das gesuchte \(C\) transformiert würde.

Mit (9.7) führt das auf die transzendente Gleichung

\[\frac{x - y}{\text{Re} z} \doteq \tan \alpha - \cot \alpha = 2 \cot (2\alpha) \]

für den Winkel \(\alpha\) der gesuchten Drehung \(O\). Diese Gleichung ist offensichtlich für alle \(\frac{x - y}{\text{Re} z}\) lösbar, und damit ist die Existenz der Zerlegung dann auch schon bewiesen.

Eindeutigkeit der Matrix \(C\)

Damit ist aber noch nicht gezeigt, dass zu jeder Matrix \(m\) genau eine Matrix \(C\) dieser Gestalt existiert. Seien nun also \(C_1, C_2\), positiv definite hermitesche Matizen, mit rein imaginären Nebendiagonalelementen. Angenommen es ist

\[C_2 = OC_1 O^\dagger U, \]

beziehungsweise \(C_2 U^* = OC_1 O^\dagger\). Weil die Determinanten von \(C_1, C_2\) positiv (und reell) sind, folgt sofort \(U \in SU(2)\). Da \(OC_1 O^\dagger\) hermitesch ist, muss ausserdem

\[UC_2 = C_2 U^* \]

gelten. Parametrisiert man nun

\[U = \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}, \]

und \(C_2\) wie gehabt, so führt diese Bedingung auf die Gleichungen

\[a_2 \alpha - ic_2 \beta = a_2 \overline{\alpha} + ic_2 \overline{\beta} \]

\[a_2 \beta = -b_2 \beta \]

\[b_2 \alpha - ic_2 \beta = b_2 \overline{\alpha} + ic_2 \overline{\beta}. \]

Da die Matrix \(C_2\) nach Voraussetzung positiv definit ist, sind \(b_2, a_2 \geq 0\). Aus der mittleren Gleichung folgt also, dass entweder \(a_2 = b_2 = 0\) ist, und somit wegen
9.2 Ein, zwei Quantenpunkte

\[a_2 b_2 \geq c_2^2 \] auch \(C_2 = C_1 = 0 \), oder aber es ist \(\beta = 0 \Rightarrow \alpha = 1 \). Im letzteren Fall wäre dann \(U = I_2 \) und es genügt daher zu zeigen, dass auch \(O \) die Identität sein muss.

Nun zeigt (9.7) aber, dass in jedem Fall \(c_2 = c_1 \) gilt, und weil \(C_1 \) und \(C_2 \) auch die gleiche Spur \((a_{1/2} + b_{1/2}) \) und die gleiche Determinante \((a_{1/2} b_{1/2}) \) haben, folgt \(a_1 = a_2, b_1 = b_2 \).

Im Hinblick auf die Konstruktion des Maßes ist noch anzumerken, dass aus obigem Beweis auch die Eindeutigkeit der beiden Matrizen \(U, O \) hervorgeht.

Es muss in diesem Zusammenhang auch darauf hingewiesen werden, dass die Eigenwerte

\[
\lambda_{1/2} = 0 \quad \lambda_{3/4} = \pm \sqrt{2(a^2 + c^2)}, \quad \lambda_{5/6} = \pm \sqrt{2(b^2 + e^2)}
\]

des Dirac-Operators

\[
D = \begin{pmatrix}
0 & 0 & a & ic & 0 & 0 \\
0 & 0 & -ic & b & 0 & 0 \\
a & ic & 0 & 0 & a & -ic \\
-ic & b & 0 & 0 & ic & b \\
0 & 0 & a & -ic & 0 & 0 \\
0 & 0 & ic & b & 0 & 0
\end{pmatrix}
\]

offenbar nicht mit den Eigenwerten

\[
\gamma_{1/2} = \frac{1}{2} \left(a + b \pm \sqrt{(a - b)^2 + 4c^2} \right)
\]

der Matrix \(C \) übereinstimmen und sich auch nicht als (einfache) Funktion der beiden Eigenwerte von \(C \) schreiben lassen. Dementsprechend ist auch die spektral invariante Wirkung \(S = \sum_k t_k \lambda_k^x \lambda_k^y \) ein kompliziertes Funktional der Eigenwerte \(\gamma_{1/2} \) von \(C \). Die Konsequenz dieser Tatsache wird gleich an einem etwas einfacheren Beispiel demonstriert.

Für die einfache Wirkung

\[
S(D) = t_1 (\lambda_1^x + \lambda_2^x) = t_1 \text{tr} D^2 = 2t_1 (a^2 + b^2 + 2c^2) = 2t_1 (\text{tr}(CC^* + \overline{C}C^t)) = \gamma_1^2 + \gamma_2^2
\]

ist das Resultat aber (noch) ganz einfach, weil \(\text{tr} (CC^*) = \text{tr} (\overline{C}C^t) \) ist.

In diesem Beispiel ist es nicht mehr ganz so einfach, ein diffeomorphismusinvariantes Maß (und somit die Zustandssumme \(Z \)) zu raten. Glücklicherweise kann man sie aber systematisch herleiten. (Darin besteht der große Vorteil der oben bewiesenen Parametrisierung der Äquivalenzklassen.)
Wie aus dem obigen Beweis hervorgeht, kann man einen Teil der erlaubten Transformationen dadurch festlegen, dass man m positiv definit und hermitesch wählt (dazu verwendet man die Spektralzerlegung $m = TU$), und das invariante Maß

$$dT = d\text{Re}(T_{11}) \ d\text{Re}(T_{22}) \ d\text{Im}(T_{21}) \ d\text{Re}(T_{21})$$

über dem Raum der hermiteschen (positiv definiten) Matrizen ist wohlbekannt. Auf diesen positiv definiten hermiteschen Matrizen verbleibt aber immer noch die Restsymmetrie $T \rightarrow OTO^T$ mit orthogonalem O. À la Faddeev und Popov kann man nun, von den Matrizen T und ihrem invariante Maß ausgehend, vermittels der Eichfixierung $\text{Re}T_{12} = 0$ die Zustandsumme als

$$Z = N \int_{T > 0} dT \ \delta(\text{Re}T_{12}) \ \Delta_{FP} e^{-S(T)}$$

schreiben. Wie üblich benötigt man dazu die Faddeev-Popov-Determinante

$$\Delta_{FP}^{-1} = \int d\alpha \ \delta(\text{Re}T_{12}^\alpha)$$

wobei T_{12}^α das nach einer Drehung um α (die verbliebenen Symmetrietransformationen) aus T resultierende (1 2)-Element bezeichnet. Den vollständigen Ausdruck für T_{12}^α entnimmt man der Gleichung (9.7), und das Berechnen des Integrals mit der Delta-Funktion ist klar. Nach ein paar Umformungen gelangt man dann zu dem verblüffend einfachen Ergebnis

$$\Delta_{FP}(T) = \sqrt{(T_{11} - T_{22})^2 + 4(\text{Re}T_{21})^2}.$$

Damit ergibt sich die Zustandssumme als

$$Z = N \int_0^\infty da \ db \ \left(\int_{-\infty}^{\infty} \frac{d\alpha}{ab} \right) \ \left(\int_{-\infty}^{\infty} \frac{dc}{\sqrt{(a-b)^2}} \ e^{-W(a,b,c)} \right) \ e^{-S(a,b,c)}$$

wobei natürlich die Tatsache zu berücksichtigen war, dass nur über positiv definite Matrizen C integriert wird.

Selbst für die freie klassische Wirkung $S(D) = t_1 \ \text{tr}D^2$ stammt der maximale Beitrag zur Zustandssumme also keineswegs von der Konfiguration $C = 0 \ (\Rightarrow \ D = 0)$. Dementsprechend ist der Erwartungswert des Abstandes für die freie Wirkung auch in diesem Beispiel endlich, wobei dieser Umstand hier auf den Beitrag der “Geister” zurückzuführen ist. Ohne Beweis sei auch angemerkt, dass die effektive Wirkung $W(a,b,c)$ nicht spektral invariant ist. W kann nicht mehr als Funktional der Eigenwerte von D ausgedrückt werden. Man kann natürlich beliebige Funktionen von a, b, c zu W addieren, was einer Änderung des Maßes entspräche. Damit wäre es dann auch ohne weiteres möglich ein spektral invarientes Maß zu erhalten, das allerdings entsprechend komplettiert aussiehe. Es scheint mir aber instruktiver zu sein, stattdessen die
Konsequenzen der fehlenden spektralen Invarianz eines ähnlichen Maßes zu beleuchten.

Ein recht überraschendes Beispiel für einen Zwei-Punkt-Raum liefert die Schnittform

\[q = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}. \]

der allgemeinste Dirac-Operator ist dann von der Form

\[
D = \begin{pmatrix} 0 & m & \mu & 0 \\ \overline{m} & 0 & 0 & \mu \\ m & 0 & 0 & \mu \\ 0 & \overline{m} & \overline{\mu} & 0 \end{pmatrix}, \quad m, \mu \in \mathbb{C},
\]

und wie weiter oben angedeutet kann man von diesen beiden komplexen Zahlen stets eine (aber nur eine) positiv reell wählen. Die Äquivalenzklassen sind also durch eine komplexe Zahl (etwa \(\mu \)) und eine positive reelle Zahl \(m \) beschrieben. Die Metrik wurde für dieses Beispiel im Abschnitt “Einfache Beispiele” als

\[
d(1, 2) = \frac{1}{\max\{m, |\mu|\}}
\]
berechnet. Die Eigenwerte des Dirac-Operators hingegen sind

\[
\lambda^2_{\pm} = m^2 + |\mu|^2 \pm |m^2 + \mu^2|,
\]

sie hängen also von der Phase in \(\mu \) ab. Man kann den Abstand der beiden Punkte folglich nicht als Funktion der beiden Eigenwerte des Dirac-Operators ausdrücken. Ganz unabhängig sind diese Größen aber auch nicht, denn

\[
\lambda^2_+ = m^2 + |\mu|^2 + \sqrt{m^4 + |\mu|^4 + 2m^2|\mu|^2 \cos(2\varphi)} \\
\geq m^2 + |\mu|^2 + \sqrt{(m^2 - |\mu|^2)^2} \\
= 2 \max\{m, |\mu|\} \\
= \frac{2}{(d(1, 2))^2},
\]

und mit einer analogen Abschätzung nach oben folgt

\[
\frac{\sqrt{2}}{|\lambda_+|} \leq d(1, 2) \leq \frac{2}{|\lambda_+|}.
\]

Die durch die Dynamik festgelegten Eigenwerte des Dirac-Operators geben demnach zumindest die Größenordnung des Abstandes der beiden Punkte an.
Eine différomorphismusiavariante Zustandssumme für $S(D) = \frac{1}{\pi M} \text{tr} D^2$ ist dann klarerweise

$$Z = \mathcal{N} \int_0^\infty \text{d}m \int \text{d}\mu \text{d}p \ e^{-\frac{p}{h}(m^2 + |\mu|^2)}$$

$$= 2\pi \mathcal{N} \int_0^\infty \text{d}m \text{d}r \ r \ e^{-\frac{1}{h}(m^2 + r^2)}$$

$$= 2\pi \mathcal{N} \int_0^\infty \text{d}m \text{d}r \ e^{-\frac{1}{h}(m^2 + r^2) - \ln r}$$

$$\overset{\text{def}}{=} 2\pi \mathcal{N} \int_0^\infty \text{d}m \text{d}r \ e^{-W[m,r]}, \quad (9.8)$$

und auf den ersten Blick sieht das auch nicht interessanter aus.

Benutzt man wieder die Abschätzung

$$+ \sqrt{m^4 + |\mu|^4 - 2m^2|\mu|^2 \cos(2\varphi)} \geq \sqrt{(m^2 - |\mu|^2)^2},$$

so ist nun aber

$$\lambda_2^- = m^2 + |\mu|^2 - \sqrt{m^4 + |\mu|^4 + 2m^2|\mu|^2 \cos(2\varphi)}$$

$$\leq m^2 + |\mu|^2 - \sqrt{(m^2 - |\mu|^2)^2}$$

$$= 2 \min\{m, |\mu|\},$$

und somit ist

$$|\lambda_+| - |\lambda_-| \geq |m - |\mu||.$$

Daraus folgt dann aber (die Wahrscheinlichkeitsdichte $e^{-\frac{1}{h}(m^2 + |\mu|^2)}$ ist stets größer Null)

$$\langle |\lambda_+| - |\lambda_-| \rangle \geq 2 \langle |m - |\mu|| \rangle$$

$$= \mathcal{N} \int_0^\infty \text{d}m \text{d}r \ |m - r| \ e^{-\frac{1}{h}(m^2 + r^2)}$$

$$= \frac{\hbar^2}{4\pi^2 \mathcal{N}} > 0.$$

Der Vakuum-Erwartungswert der beiden quantisierten Eigenwerte wird also verschien sein. Bei spektraler Invarianz der Quantentheorie sollten aber alle Eigenwerte von D den gleichen Vakuum-Erwartungswert haben:

Beobachtung 9.2.5. Ist $S(D^2)$ spektral invariant,

$$S(D^2) = \sum_i P(\lambda_i^2),$$

und hat das Polynom $P(\lambda^2)$ ein eindeutiges Extremum λ_0^2, dann sind im Extremum des Funktionals $S(D)$ alle Eigenwerte des Laplace-Operators D^2 identisch (gleich λ_0^2).
Diese Eigenschaft folgt offenbar aus der spektralen Invarianz. Der Grundzustand sollte ja spektral (und daher insbesondere unter Vertauschung der Eigenvektoren von D^2) invariant sein.

Aus der obigen Rechnung folgt nun, dass sich die unitären Transformationen, die diesen Vertauschungen entsprechen, in der quantisierten Theorie nicht so darstellen lassen, dass der Grundzustand invariant darunter wäre.

Der Grund für diese Verletzung der spektralen Invarianz dürfte klar sein: Das verwendete Maß ist nicht spektral invariant, was man auch an der effektiven Wirkung

$$W(m, r) = -\frac{i}{\hbar}(m^2 + r^2) - \ln r,$$

deren Minimum nicht bei $r = 0$ sondern bei $r = \frac{\sqrt{6}}{2}$ liegt, erkennen kann. Andererseits wird nur über diffeomorphinvariante Größen (in Anbetracht der gigantischen Diffeomorphismusgruppe eine besonders eindrucksvolle Eigenschaft) und unitäre Äquivalenzklassen von Dirac-Operatoren summirt. Von diesem Standpunkt aus betrachtet ist die obige Quantisierung also konsistent, in dem Sinne, dass keine fälschliche Überzählung von Freiheitsgraden stattgefunden hat.

Betrachtet sei als weiteres Beispiel mit ähnlichen Eigenschaften\(^1\) weiterhin die Algebra $\mathbb{C} \oplus \mathbb{C}$, aber

$$q = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix},$$

so kann der allgemeinste, erlaubte Dirac-Operator wieder als

$$D = \begin{pmatrix} 0 & m_1 & m_2 & 0 \\ \overline{m}_1 & 0 & 0 & m_1 \\ \overline{m}_2 & 0 & 0 & m_2 \\ 0 & \overline{m}_1 & \overline{m}_2 & 0 \end{pmatrix}, \quad m_1, m_2 \in \mathbb{C}$$
nunmehr mit $(m_1, m_2) : \mathcal{H}_1 \mapsto \mathcal{H}_2$ parametrisiert werden. In dem zweidimensionalen Raum \mathcal{H}_1 kann man immer noch eine orthogonale Transformation $O \in O(2)$, sowie in dem eindimensionalen Raum \mathcal{H}_2 eine Phasentransformation $e^{i\varphi} \in U(1)$ durchführen.

Proposition 9.2.6. Sei $\vec{m} = (m_1, m_2) \in \mathbb{C}^2$. Dann existieren eindeutig bestimmte $O \in O(2)$ und $e^{i\varphi}, e^{i\psi} \in U(1)$, mit

$$e^{i\varphi} \vec{m} O = \frac{|\vec{m}|}{\sqrt{2}} (1, e^{i\psi}).$$

Zum Beweis muss man nur die entsprechenden Gleichungen für O und φ betrachten. Die Äquivalenzklassen von Dirac-Operatoren sind also durch Vektoren der Form $\frac{|\vec{m}|}{\sqrt{2}}(1, e^{i\psi})$ – also einen Kegel im \mathbb{C}^2 – beschrieben. Mit den Eigenwerten

$$\lambda_{\pm} = 2 \varphi \left(1 \pm \sqrt{2 + 2 \cos(2\psi)}\right)$$

\(^1\)Alle diese Beispiele verfolgen nur ein Ziel: Sie liefern Spielzeugmodelle für die geplanten nichttrivialen Untersuchungen.
und $S(D) = \frac{1}{4} \text{tr} D^2 = t \rho^2$ findet man dann (für das offensichtlichste Maß)

$$\langle \lambda_+^2 - \lambda_-^2 \rangle = \frac{1}{2\pi} \langle \rho^2 \rangle \int d\psi \sqrt{2 + 2 \cos(2\psi)} = \frac{4}{\pi} \langle \rho^2 \rangle > 0.$$

Das Verwirrende an diesem Beispiel ist, dass sich ρ und ψ hier eindeutig nach den beiden Eigenwerten des Dirac-Operators auflösen lassen. Das verwendete Maß ist also spektral invariant: Wir konnten bisher nicht klären, wo dieser Verlust an spektraler Invarianz beim Übergang von der klassischen zur Quantentheorie herrührt. ($\langle \lambda_+ - \lambda_- \rangle$ ist im Übrigen ebenfalls von Null verschieden.)

Nun zurück zu den weniger instruktiven Beispielen. Ein einfaches Modell, das zeigt, welche Rolle der Algebra (oder den Diffeomorphismen, oder der Schnittform q, was äquivalent dazu ist) zukommt, ist das zuvor schon kurz diskutierte Beispiel

$$\left(\mathbb{C} \oplus M_2(\mathbb{C}), q = N \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix} \right).$$

Wie bereits gezeigt bestehen die erlaubten unitären Transformationen hier nur aus einer orthogonalen Transformation im zweidimensionalen Raum \mathcal{H}_1. Der Dirac-Operator ist dann durch eine (2×2)-Matrix M vollständig bestimmt. Es gilt aber auch die inneren Diffeomorphismen, die auf den Raum \mathcal{H}_2 als $u \in SU(2)$ wirken, zu berücksichtigen. Die Matrix M transformiert sich gemäß

$$M \to O M U,$$

und kann wieder auf die gleiche Form wie im obigen Beispiel für $\mathbb{C} \oplus \mathbb{C}$, nämlich die einer positiv definiten hermiteschen Matrix mit rein imaginärem Eintrag auf der Nebendiagonale, transformiert werden. Das Maß sieht dann auf den ersten Blick gleich aus, obwohl es sich um unterschiedliche Räume handelt. Nur die Tatsache, dass es sich in dem einen Beispiel bei den $SU(2)$-Symmetrien um Diffeomorphismen handelt, während es in dem anderen gar keine erkennbaren Diffeomorphismen gibt, macht den Unterschied zwischen beiden Modellen aus. Das war selbstverständlich auch zu erwarten, denn nach dem Abdivideiren der Diffeomorphismen bleibt keinerlei Information über die Algebra übrig.

9.3 Das Maß aller Matrizen

Das Vorgehen im vorigen Abschnitt war natürlich alles andere als systematisch. Der im folgenden bewiesene Satz stellt einen ersten, winzigen Schritt in Richtung einer allgemeinen Definition von invarianten Maßen für beliebige diskrete spektrale Tripel dar. Das zu lösende Problem taucht zum Beispiel bei spektralen Tripeln zur Algebra $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$ der Form:

$$q = \begin{pmatrix} 0 & -q & p \\ -q & 0 & 0 \\ p & 0 & A \end{pmatrix}$$

auf. (q, p, A sind dabei nichtverschwindende natürliche Zahlen. Es ist recht natürlich die Notation p, q einzuführen, in der Hoffnung, dass die doppelte Verwendung des Buchstaben q nicht zu verwirrend ist.)
Der Dirac-Operator wird in diesem Beispiel durch eine $(p \times q)$-Matrix M bestimmt, welche durch die unitären Transformationen in den Räumen $\mathcal{H}_{12},\mathcal{H}_{13}$ vollständig diagonalisiert werden kann. Der einzige Grund einen dritten Punkt einzuführen besteht hier also darin, dass die Matrix M dann nicht in einen \mathcal{H}_{12} von Majorana-Spinoren abbildet. (Dann wären ja nur orthogonale Transformationen auf diesem Raum erlaubt.) Der erste der drei Punkte (der Zustand auf dem ersten Summanden der Algebra) hat zu den anderen beiden unendlichen Abstand. Es ist im übrigen nicht sehr schwierig sich davon zu überzeugen, dass die unabhängigen Eigenwerte von D gerade die charakteristischen Werte von M sind. Dazu betrachtet man am besten gleich D^2. Dieser Operator ist nämlich blockdiagonal, mit (den einzigen nichtverschwindenden) Einträgen
\[
(D^2)_{12,12} = \left(\left((D^2)_{13,13} \right)^* \right)^4 = (D^2)_{21,21} = MM^*.
\]
Da man M also “diagonalisieren” kann, wird man dies natürlich auch als Eichbedingung verwenden. Die Aufgabe besteht nun darin, die Faddeev-Popov-Determinante
\[
\Delta_{FP}(\Lambda) = \int dU_1 dU_2 \, \delta(U_1 MU_2^* - \Lambda)
\]
zu berechnen.

Wenn M keine quadratische Matrix ist $(p \times q, q < p)$, so kann man M natürlich nicht diagonalisieren. Es existiert dann aber stets eine Basiswahl im Start-und Zielraum von M, so dass M einen quadratischen und diagonalen sowie einen weiteren Block mit verschwindenden Einträgen enthält, also
\[
M \rightarrow \begin{pmatrix}
\Lambda, 0_q, \ldots, 0_q
\end{pmatrix}_{p} \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_q).
\]
Auf einen Beweis dieser Aussage wird an dieser Stelle verzichtet. (Man wählt die beiden unitären Matrizen so, dass sowohl MM^+ als auch M^+M diagonal sind. Da die $(p \times p)$-Matrix $M M^+$ Rang $q < p$ hat, verbleibt dabei eine Freiheit, mit deren Hilfe M auf die gewünschte Form transformiert wird.)

Die entsprechende Eichbedingung wird in der Folge als $\Xi(M) = 0$ abgekürzt. Die Rechnung ist sehr trickreich und greift auf Ergebnisse von Itzykson und Zuber [ItZu-Mat] zurück, die man zum Beispiel dem nützlichen Review-Artikel von [diF] entnehmen kann. An gegebener Stelle wird noch einmal darauf hingewiesen. In jedem Fall sollte der Leser sich schon einmal ein paar Kekse und eine Kanne Tee besorgen bevor er weiterliest, oder aber er liest zunächst das Endergebnis, welches am Ende des Abschnitts in einem Satz zusammengefasst wird.
Die Grundidee im Folgenden ist es die Faddeev-Popov-Formel rückwärts anzuwenden. Das heißt genauer, man zerlegt das Integral über beliebige \((p \times q)\)-Matrizen \((q \leq p, \text{ o.B.d.A})\) in die Integrale über rechts- und linksunitäre Transformationen, sowie über diagonale positiv-semidefinite Matrizen. Dann erhält man für beliebige Funktionen \(f(M)\), welche nur von den charakteristischen Werten von \(M\) abhängen, einen Ausdruck der Form

\[
\int dM \, f(M) = \int dU_r \, dU_l \int d\lambda_1 \cdots d\lambda_q \Delta_{FP}^{-1}(\lambda_1, \ldots, \lambda_q) \, f(\lambda_1, \ldots, \lambda_q).
\]

Es ist klar, dass das somit definierte \(\Delta_{FP}\) mit der gesuchten Faddeev-Popov-Determinante identisch ist, denn es gilt nun ja auch umgekehrt

\[
\int d\lambda_1 \cdots d\lambda_q \, f(\lambda_1, \ldots, \lambda_q) \propto \int dM \, \delta(\Xi(M)) \Delta_{FP}(\lambda_1, \ldots, \lambda_q) \, f(M).
\]

Der erste Schritt besteht darin die Matrix \(M\) zu einer hermiteschen Matrix zu erweitern: Dazu beginnt man mit der Setzung

\[
D = \begin{pmatrix} 0 & M \\ M^* & 0 \end{pmatrix},
\]

die zu

\[
\int dMe^{-S(M)} = \int dDe^{-S(D)}
\]

fortgesetzt wird. Die Matrizen \(A, B\) sind hermitesch \((A \in M_{p \times p}, B \in M_{q \times q})\) und die Integration über \(m\) wird mit dem invarianten Maß für hermitesche Matrizen durchgeführt.

Es sei darauf hingewiesen, dass die obige Form von \(D\) schon sehr nahe an der Form eines “realistischen” Dirac-Operators ist (die Realitätsstruktur wurde aber nicht berücksichtigt). Das ist natürlich ein sehr wünschenswerter Ansatz, denn im Idealfall möchte man zu einer Formel gelangen, die aus der Kenntnis der Daten \((A, q)\) des spektralen Tripels das korrekte invarianze Maß angibt. Zu diesem Zweck wäre es sinnvoll die Zwangsbedingungen an den Dirac-Operator, wie sie aus diesen Daten folgen, direkt mit Hilfe von \(\delta\)-Distributions in ein Integral formulieren zu können. In jedem Fall, und das ist im weiteren wichtig, ist die Spur des quadrierten Dirac-Operators proportional zu \(\text{tr}MM^*\) und nur deshalb macht der obige Ansatz Sinn.

Proposition 9.3.1. Sei \(m\) die oben definierte hermitesche Matrix. Dann gilt

\[
\delta(A)\delta(B) = \int dc_1 \, dc_2 e^{\text{tr}(Cm)}.
\]

Dabei sind \(c_1, c_2\) hermitesche Matrizen \((c_1 : p \times p, c_2 : q \times q)\) und es ist

\[
C = \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix}.
\]
Beweis: Es seien zunächst einmal \(M = M^* \), \(C = C^* \) beliebige \((n \times n)\)-Matrizen. Betrachte
\[
\int dCe^{i\text{tr}(CM)}
\]
mit
\[
dC = \prod_{i=1}^{n}d^i \Pi_{i<j}d \text{Re}c_{ij}d \text{Im}c_{ij},
\]
der expliziten Form des invarianten Maßes auf dem Raum der hermiteschen Matrizen. Man berechnet nun \(\text{tr}(CM) \) als Funktion der unabhängigen Variablen in \(C \):
\[
\text{tr}(CM) = \sum_{i=1}^{n}(CM)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}m_{ji} = \sum_{i=1}^{n-1} 2(\text{Re}c_{ij}\text{Re}m_{ji} - \text{Im}c_{ij}\text{Im}m_{ji})
\]
Also ist:
\[
\int dCe^{i\text{tr}(CM)} = \prod_{i=1}^{n} \int e^{i(c_{ii}m_{ii})} d^i \Pi_{i<j} \int d \text{Re}c_{ij}e^{2i\text{Re}c_{ij}\text{Re}m_{ji}} \Pi_{i<j} \int d \text{Im}c_{ij}e^{-2i\text{Im}c_{ij}\text{Im}m_{ji}}
\]
und somit ist
\[
\int dCe^{i\text{tr}(CM)} = \delta(M).
\]
(Die eigentlich auftretenden Vorfaktoren \(\sqrt{2\pi^n} \) etc. werden in der Folge unberücksichtigt bleiben, Gleichheitszeichen zeigen also strengen Proportionalitäten an. Am Ende der Rechnung würden diese Konstanten ohnehin in der Normierung des Maßes verschwinden.) Desweiteren ist
\[
\text{tr} \left(\begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} \begin{pmatrix} A & M \\ M^* & B \end{pmatrix} \right) = \text{tr} \left(\begin{pmatrix} c_1A & c_1M \\ c_2M^* & c_2B \end{pmatrix} \right) = \text{tr}(c_1A) + \text{tr}(c_2B).
\]
Womit nun sofort die Behauptung
\[
\int dc_1 dc_2 e^{i\text{tr} \left(\begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} \right)^m} = \int dc_1 dc_2 e^{i(\text{tr}(c_1A) + \text{tr}(c_2B))} = \delta(A)\delta(B)
\]
folgt. □
Wir haben also:
\[
\int dMe^{-S(M)} = \int dm e^{-S(m)} \int dc_1 dc_2 e^{i\text{tr}(cm)}
\]
Für hermitesche Matrizen ist nun folgende Formel wohlbekannt (diFrancesco et al):
\[
\int dA e^{-S(A)} = \int d\Delta U \Delta^2(A) e^{-S(A)}
\]
mit \(A = UA^*, \ U \) einer unitären, \(\Lambda \) einer diagonalen Matrix, \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \), und
\[
\Delta(\Lambda) = \prod_{i<j}^{n}(\lambda_i - \lambda_j)
\]
ist die Vandermonde-Determinante zu \(\Lambda \). In unserem Fall liefert das also für \(m \):

\[
\int dM e^{-S[M]} = \int d\Lambda dU \Delta^2(\Lambda) e^{-S(\Lambda)} \int dc_1 dc_2 e^{i \text{tr}(cU^\ast c^\dag U)}
\]

Mit der Notation
\(\Gamma \): Diagonalmatrix aus den Eigenwerten von \(c \)
\(\gamma_k \): Eigenwerte von \(c \)
\(\lambda_k \): Eigenwerte von \(\Lambda \) (d.h. in unserem Fall von \(m \)), \(k = 1, \ldots, p + q \)
kann man nun eine weitere wichtige Formel verwenden, die unter dem Namen Itzykson–Zuber–Integral bekannt ist:

\[
\int dU e^{i \text{tr}(cU^\ast c^\dag U)} = \frac{1}{\Delta(\Lambda) \Delta(\Gamma)} e^{i \sum_k \gamma_k \lambda_k}.
\]

Dann folgt weiter:

\[
\int dM e^{-S[M]} = \int d\Lambda e^{-S(\Lambda)} \Delta^2(\Lambda) \int dc_1 dc_2 \frac{1}{\Delta(\Lambda) \Delta(\Gamma)} e^{i \sum_k \gamma_k \lambda_k}
\]

\[
= \int d\Lambda e^{-S(\Lambda)} \Delta(\Lambda) \int dc_1 dc_2 \frac{1}{\Delta(\Gamma)} e^{i \sum_k \gamma_k \lambda_k}
\]

\[
= \int d\Lambda e^{-S(\Lambda)} \Delta(\Lambda) F
\]

wobei

\[
F = \int d\Gamma_1 d\Gamma_2 \frac{\Delta^2(\Gamma_1) \Delta^2(\Gamma_2)}{\Delta(\Gamma)} e^{i \sum_k \gamma_k \lambda_k}
\]

mit
\(\Gamma_1 = \text{diag}(a_1, \ldots, a_p) \) den Eigenwerten von \(c_1 \),
\(\Gamma_2 = \text{diag}(b_1, \ldots, b_q) \) den Eigenwerten von \(c_2 \),
\(\Rightarrow (\gamma_k)_{k=1}^{p+q} = (a_1, \ldots, a_p, b_1, \ldots, b_q) \)
gesetzt wurde. Explizit ausgeschrieben ist:

\[
\frac{\Delta^2(\Gamma_1) \Delta^2(\Gamma_2)}{\Delta(\Gamma)} = \frac{\Delta(\Gamma_1) \Delta(\Gamma_2)}{\prod_{i=1}^{p} \prod_{j=1}^{q} (a_i - b_j) \prod_{k=1}^{q} (b_k - b_1) \prod_{k=1}^{p} (a_k - b_k)}
\]

Lemma 9.3.2. Es ist

\[
\frac{\prod_{i<j}^{p} (a_i - a_j) \prod_{k<l}^{q} (b_k - b_l)}{\prod_{i,j}^{p} (a_i - b_j)} \propto \sum_{\sigma, \pi} (-1)^{\sigma} \prod_{j>i}^{q+1} \prod_{i=1}^{p} (a_{\sigma(i)} - a_{\sigma(j)}) \prod_{k=1}^{q} (a_{\sigma(k)} - b_{\sigma(k)})
\]

(hier ist o.B.d.A. \(p \geq q, p > q \) klar, für \(p = q \) ist der Zähler rechts = 1 zu setzen).
Das Maß aller Matrizen

Beweis: Es sei nur kurz die Beweisidee skizziert, die technischen Einzelheiten sind dann nicht sehr schwer. Eine wichtige und offensichtliche Eigenschaft der Vandermonde-Determinante \(\Delta(\lambda) = \Pi_{i<j}(\lambda_i - \lambda_j) \) ist, dass jedes total antisymmetrische Polynom in den \(\lambda_i \) automatisch proportional zu \(\Delta(\lambda) \) ist. Zu zeigen ist also nur, dass die mit \(\prod_{i<j} (a_i - b_j) \) multiplizierte rechte Seite der zu beweisenden Gleichung ein nichtverschwindendes total antisymmetrisches Polynom in den \(a_i \) und in den \(b_j \) ist, und dass dieses Polynom vom gleichen Grad wie \(\Delta(\Gamma_1)\Delta(\Gamma_2) \) ist. Beides ist elementare Algebra, und da noch ein weiter Weg zu beschreiten ist, sei auf die Einzelheiten verzichtet.

Womit nun ist. Bevor es weitergeht sei auf folgende kleine Identität hingewiesen:

Proposition 9.3.3.

\[
\int d\gamma_1 d\gamma_2 \frac{1}{\gamma_1 - \gamma_2} e^{i(\gamma_1 \lambda_1 + \gamma_2 \lambda_2)} \propto \delta(\lambda_1 + \lambda_2)
\]

Beweis:

\[
\int d\gamma_1 d\gamma_2 \frac{1}{\gamma_1 - \gamma_2} e^{i(\gamma_1 \lambda_1 + \gamma_2 \lambda_2)} = \int dx dz \frac{1}{x} e^{ix(\lambda_1 + \lambda_2)} e^{i\lambda_1 z} = \int dz \frac{1}{z} \int dx e^{ixe(\lambda_1 + \lambda_2)} \propto \delta(\lambda_1 + \lambda_2).
\]

(Für die letzte Gleichung benutzt man den Residuensatz.)

Wozu diese Gleichung dient, kann man sich sicher schon denken: Da in der im obigen Lemma (andeutungsweise) bewiesenen Formel für feste Permutationen \(\sigma, \pi \) im Nenner nur Integrationsvariablen \((a_{\sigma(k)} + a_{\pi(k)+p}) \) auftauchen, welche nicht im Zähler stehen, kann man diese nun mit Hilfe der Formel aus der Proposition ausintegrieren. Um nun die Integration über die übrigen Variablen ausführen zu können muss man sich nur an die Formel

\[
\int da_1 \ldots da_n P(a_1, \ldots, a_n) e^{i \sum_{k=1}^n \lambda_k a_k} = P(-i \frac{\partial}{\partial \lambda_1}, \ldots, -i \frac{\partial}{\partial \lambda_n}) \Pi_{k=1}^q \delta(\lambda_k)
\]

für ein beliebiges Polynom \(P \) erinnern.

Dann ist nämlich

\[
\Pi_{k=1}^q \delta(\lambda_{\sigma(k)} + \lambda_{\pi(k)+p}) \int da_{\sigma(q+1)} \ldots da_{\sigma(p)} \prod_{j \geq q+1} (a_{\sigma(i)} - a_{\sigma(j)}) e^{i \sum_{k=q+1}^p \delta(\lambda_k)}
\]

\[
= \Pi_{k=1}^q \delta(\lambda_{\sigma(k)} + \lambda_{\pi(k)+p}) \left[\prod_{j \geq q+1} \left(\frac{\partial}{\partial \lambda_{\sigma(i)}} - \frac{\partial}{\partial \lambda_{\sigma(j)}} \right) \prod_{k=q+1}^p \delta(\lambda_{\sigma(k)}) \right]
\]

und (mit \(n = p + q \)) landet man jetzt bei
Diskretes Trommeln

\[\int dM e^{-S(M)} \]

\[= \int d\lambda_1 \ldots d\lambda_n e^{-S(\lambda_1, \ldots, \lambda_n)} \Delta (\lambda_1, \ldots, \lambda_n) \cdot \sum_{\sigma, \pi} (-)^{\sigma \pi} \Pi_{k=1}^q \delta (\lambda_\sigma(k) + \lambda_\pi(k)+p) \left[\Pi_{j>i \geq q+1} \left(\frac{\partial}{\partial \lambda_\sigma(i)} - \frac{\partial}{\partial \lambda_\sigma(j)} \right) \Delta (\lambda_1, \ldots, \lambda_n) \right] \]

Damit ist man dann schon so gut wie fertig. Es müssen noch ein paar Permutationen durch Vertauschen von Integrationsvariablen eliminiert werden, was nach dem Schema

\[\int dx_1 \ldots dx_n f(x_1, \ldots, x_n) \frac{\partial}{\partial x_\sigma(k)} g(x_1, \ldots, x_n) \]

\[= \int dx_1 \ldots dx_n f(x_{\sigma-1(1)}, \ldots, x_{\sigma-1(n)}) \frac{\partial}{\partial x_k} g(x_{\sigma-1(1)}, \ldots, x_{\sigma-1(n)}) \]

letztlich auf die schon wesentlich übersichtlichere Form

\[\int dM e^{-S(M)} \]

\[= \sum_{\sigma, \pi} (-)^{\sigma \pi} \int d\lambda_1 \ldots d\lambda_n \Pi_{k=1}^q \delta (\lambda_\pi(k) + \lambda_\pi(k)+p) \cdot \left[\Pi_{j>i \geq q+1} \left(\frac{\partial}{\partial \lambda_\sigma(i)} - \frac{\partial}{\partial \lambda_\sigma(j)} \right) \left(e^{-S(\lambda_{\sigma-1(1)}, \ldots, \lambda_{\sigma-1(p)}; \lambda_{p+1}, \ldots, \lambda_n)} \cdot \Delta (\lambda_{\sigma-1(1)}, \ldots, \lambda_{\sigma-1(p)}, \lambda_{p+1}, \ldots, \lambda_n) \right) \right] \]

führt. Nun hat

\[\Pi_{j>i \geq q+1} \left(\frac{\partial}{\partial \lambda_i} - \frac{\partial}{\partial \lambda_j} \right) = \sum_{\tau \in S_{p-q}} \frac{\partial^n}{\partial \lambda_{q+\tau(1)}^{\tilde{\tau}}} \frac{\partial^{p-q-1}}{\partial \lambda_{q+\tau(p-q)}^{\tilde{\tau}}} \]

die Struktur einer Vandermonde-Determinante, und es folgt weiter
\[
\int dM \, e^{-S(M)} = \sum_{\pi, \pi'} (-\pi)^{\pi} \int d\lambda_1 \ldots d\lambda_n \Pi_{k=q+1}^p \delta (\lambda_k) \Pi_{k=1}^q \delta (\lambda_k + \lambda_{\pi(k)+p}) \cdot \\
\cdot \frac{\partial^0}{\partial \lambda_0^{q+1}} \ldots \frac{\partial^{p-q-1}}{\partial \lambda_0^{p-q-1}} \left[e^{-S(\lambda_1, \ldots, \lambda_n)} (-\pi)^{\pi} \Delta (\lambda_1, \ldots, \lambda_n) \right] \\
= p \sum_{\pi, \pi'} (-\pi)^{\pi} \int d\lambda_1 \ldots d\lambda_n \Pi_{k=q+1}^p \delta (\lambda_{\pi-1}(k-q)+q) \Pi_{k=1}^q \delta (\lambda_k + \lambda_{\pi(k)+p}) \cdot \\
\cdot \frac{\partial^0}{\partial \lambda_0^{q+1}} \ldots \frac{\partial^{p-q-1}}{\partial \lambda_0^{p-q-1}} \left[e^{-S(\lambda_1, \ldots, \lambda_n)} (-\pi)^{\pi} \Delta (\lambda_1, \ldots, \lambda_n) \right] \\
= p(p-q) \sum_{\rho, \rho'} (-\rho)^{\rho} \int d\lambda_1 \ldots d\lambda_n \Pi_{k=q+1}^p \delta (\lambda_k) \Pi_{k=1}^q \delta (\lambda_k + \lambda_{\pi(k)+p}) \cdot \\
\cdot \frac{\partial^\rho}{\partial \lambda_0^{q+1}} \ldots \frac{\partial^{p-q-1}}{\partial \lambda_0^{p-q-1}} \left[e^{-S(\lambda_1, \ldots, \lambda_n)} (-\pi)^{\pi} \chi(\lambda_0^{\rho(1)}, \ldots, \lambda^{p+q-1}_{\rho(p+q)}) \right].
\]

(*) liefert im Integral nur dann einen Beitrag, wenn es von \(\lambda_{q+1}, \ldots, \lambda_{p}\) nur implizit in \(S\) abhängt (wegen des Terms \(\Pi_{k=q+1}^p \delta (\lambda_k)\)). Da \(S\) nach Voraussetzung polynomial von den \(\lambda_i\) abhängt, vergrößert jede Ableitung, die auf \(e^{-S}\) wirkt, den Exponenten des entsprechenden \(\lambda_i\). Daher müssen alle Ableitungen auf den Term \(\chi(\lambda_0^{\rho(1)}, \ldots, \lambda^{p+q-1}_{\rho(p+q)})\) wirken.

Nach \(\lambda_{q+l}, l \in [1, p-q]\), wird \((l-1)\)-mal abgeleitet, d.h. in (…) muß \(\lambda_{q+l}\) genau mit der Potenz \(l-1\) auftreten. Der Term, der mit der Potenz \((l-1)\) auftritt, ist aber \(\lambda_{\rho(l)}\).

Dies führt zu der Forderung \(\rho(l) = q + l \forall l \in [1, p-q]\). Von (*) bleibt (nach Ausnutzung von \(\Pi_{k=q+1}^p \delta (\lambda_k)\)) also nur:

\[e^{-S(\lambda_1, \ldots, \lambda_n)} \chi(\lambda_0^{\rho(1)}, \ldots, \lambda^{p+q-1}_{\rho(p+q)})\]

übrig, und damit ist nun wieder

\[
\int dM \, e^{-S(M)} = p(p-q) \sum_{\rho, \pi'} (-\rho)^{\rho} \int d\lambda_1 \ldots d\lambda_{q+l-1} d\lambda_{q+l} \ldots d\lambda_{\rho(p+q)+q} \Pi_{k=1}^q \delta (\lambda_k + \lambda_{\pi(k)+p}) \cdot \\
\cdot e^{-S(\lambda_1, \ldots, \lambda_{q+l-1}, \lambda_{q+l} \ldots \lambda_{p+1} \ldots \lambda_{\rho(p+q)})} \chi(\lambda^{p+q}_{\rho(p+1)}, \ldots, \lambda^{p+q}_{\rho(p+q)}).
\]

Hier wird nur über diejenigen Permutationen \(\rho\) summiert, welche der Nebenbedingung \(\rho(l) = q + l \forall l \in [1, p-q]\) genügen. Dies impliziert

\[\rho(\{p-q+1, \ldots, p+q\}) \subset \{1, \ldots, q\} \cup \{p+1, \ldots, p+q\}.
\]
Das sieht dann schon nicht mehr ganz so scheußlich aus. Zusammengefasst und schlussendlich folgt

\[\sum_{\rho} (-\rho)^{\rho-q} \lambda^{\rho-q} \lambda_{p+q}^{p+q-1} = \sum_{\rho} (-\rho)^{\rho-q} \left(\lambda_{p(p-q+1)} \cdots \lambda_{p+q} \right)^{p+q-1} \lambda_{p+q}^{2q-1} \lambda_{p+q}^{0} \Delta (\lambda_{p+q}, \lambda_{p+q}, \lambda_{p+q}, \ldots, \lambda_{p+q}) \]

so folgt

\[\int d\lambda e^{-S(M)} = p(p-q) \int d\lambda \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \prod_{k=1}^{q} \delta (\lambda_{k} + \lambda_{p+q}) \cdot e^{-S(\lambda_{1}, \ldots, \lambda_{q}, \lambda_{p+q})} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \Delta (\lambda_{1}, \ldots, \lambda_{q}, \lambda_{p+q}, \lambda_{p+q}, \lambda_{p+q}) \]

Wegen des Terms \(\prod_{k=1}^{q} \delta (\lambda_{k} + \lambda_{p+q}) \) kann man \(\lambda_{p+q}, \ldots, \lambda_{p+q} \) mit der Identifikation

\[\lambda_{k} = -\lambda_{p+q}(k)\]

ausintegrieren. Dann gilt:

\[\Delta (\lambda_{1}, \ldots, \lambda_{q}, \lambda_{p+q}, \lambda_{p+q}) = \Delta (\lambda_{1}, \ldots, \lambda_{q}) \Delta (\lambda_{p+q}, \lambda_{p+q}) \prod_{k=1}^{q} \delta (\lambda_{k} + \lambda_{p+q}) \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \Delta (\lambda_{1}, \ldots, \lambda_{q}, \lambda_{p+q}, \lambda_{p+q}, \lambda_{p+q}) \]

und schlussendlich folgt

\[\int d\lambda e^{-S(M)} = \int d\lambda e^{-S(\lambda)} = p(p-q) \int d\lambda \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \prod_{k=1}^{q} \delta (\lambda_{k} + \lambda_{p+q}) \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \Delta (\lambda_{1}, \ldots, \lambda_{q}, \lambda_{p+q}, \lambda_{p+q}, \lambda_{p+q}) \]

Das sieht dann schon nicht mehr ganz so schrecklich aus. Zusammengefasst und mit einem Rückblick auf das eigentliche Ziel dieser Rechnung:

\[c_{p,q} \int d\lambda \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \prod_{k=1}^{q} \delta (\lambda_{k} + \lambda_{p+q}) \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \lambda_{p+q} \Delta (\lambda_{1}, \ldots, \lambda_{q}, \lambda_{p+q}, \lambda_{p+q}, \lambda_{p+q}) \]
Satz 9.3.4. Sei $A = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$ mit der Schnittform

$$
\begin{pmatrix}
0 & -q & p \\
-q & 0 & 0 \\
p & 0 & A
\end{pmatrix}
$$

mit $p \geq q$.

Bezeichne die $(p \times q)$-Matrix M den unabhängigen Block im Dirac-Operator, $\Xi(M)$ sei die Eichfixierungsbedingung, welche M auf die oben beschriebene kanonische Form (in welcher die nichtverschwindenden Eigenwerte λ_i^2 von MM^* die einzigen nichtverschwindenden Einträge sind) einschränkt. Dann ist die Zustandsdichte (in invarianter Form)

$$Z = N \int dM \, \delta(\Xi(M)) \, \Delta(M)_{FP} \, e^{-S(M)},$$

wobei

$$\Delta(M)_{FP}^{-1} = \left(\prod_{k=1}^{q} \lambda_k \right)^{2(p-q)+1} \prod_{i<j}^{q} (\lambda_i - \lambda_j)^2 \left(\lambda_i + \lambda_j \right)^2$$

ist.

Bemerkung 9.3.5. Es muss noch einmal darauf hingewiesen werden, dass die obige Form von Z nichts anderes als eine ziemlich komplizierte Art darstellt, zu schreiben. Der Zweck der obigen Ableitung lag, wie eingangs erwähnt, ausschließlich darin ein paar Rechenkniffe zu erarbeiten, die später einmal nützlich sein könnten.

Bemerkung 9.3.6. Zum Abschluss sollte man noch etwas zu der Form von Δ_{FP} sagen. Die auftretenden Faktoren $(\lambda_i - \lambda_j)$ lassen sich wie folgt verstehen: Hat die Matrix M zwei (oder mehrere) entartete Eigenwerte, so gibt es unitäre Transformationen, die mit M kommutieren. Daher ist in diesem Fall das Volumen des “Eichorbits” von M deutlich kleiner als im Fall ohne Entartung (wie sich in der Formel zeigt ist es eine Nullmenge), und es trägt daher nicht zum Integral bei. Da die Eigenwerte der Ausgangsmatrix

$$D = \begin{pmatrix}
0 & M \\
M^* & 0
\end{pmatrix}$$

aber gerade $\pm \sqrt{\lambda_i^2}$ sind, gibt es jeweils auch den Faktor(\lambda_i + \lambda_j). Der Vorfaktor $\lambda_i^{2(p-q)+1}$ stammt von den Integralen über die zusätzlichen Phasen einer nichthermiteschen Matrix.

Interessanterweise tauchen in der obigen Formel für die Faddeev-Popov-Determinante die Parameter p, q der Schnittform explizit auf. Dies ist ein schönes Beispiel für die

Nun ist es aber langsam genug, mir bleibt nur noch eins zu tun:

Hehr und umringt von seiner Großen Chor
Hebt Magnus seine breite Stirn empor;
Er scheint auf seinem Thron ein Gott, umringt
von Füchsen, Brandern, zitternd, wenn er winkt.
In dumpfem Schweigen sitzen rings sie alle,
Wenn seine Stimme beben lässt die Halle,
Die armen Toren tadeln grimm und graus,
Die in mathematischen Sätzen schlecht zu Haus.

So ist der Jüngling, der, das Hirn gespickt
Mit Wissenskram, der Schule Lorbeer pflückt,
Wohl gar erlangt des Deklamierens Preis,
Wenn er so hoch sich zu versteigen weiß.
Doch wird kein Alltagsredner hoffen können,
Den Silberbecher jemals sein zu nennen,
Obgleich Beredsamkeit nicht nötig tut,
Demosthenes’ Feuer nicht, noch Tullius’ Glut;
Klar oder warm zu sprechen ist desgleichen
Nutzlos – man spricht nicht, um zu überzeugen.
Wer mag, der rede, andern zu gefallen –
Wir sind uns selbst genug, trotz jenen allen,
Und unsere Würde wählt den Murmelton,
Halb Krächzen, Stöhnen halb – so geht es schon;
Und keiner nehm erborgten Anstand an –
Der kleinste schon missfiel dem Dekan,
Und jeder Graduierte würde lachen,
Dass er so ungeschickt es nachzumachen.
Drum wer den Becher zu erhalten denkt,
Muss wie ein Pfosten stehn, den Blick gesenkt,
Anhalten nie, nein, rasseln immerfort.
Was? ist gleichviel, denn man versteht kein Wort.
So jag er stets voran und ruhe nicht,
Da wer am schnellsten auch am besten spricht.
Wer in der kleinsten Zeit das meiste sagt,
Ist sicher, dass er sich den Preis erjagt.

Lord Byron *Gedanken bei einer Collegeprüfung*
Literaturverzeichnis

[BK] P. N. Bibikov, P. P. Kulish, Dirac operators on quantum su(2) group and quantum sphere q-alg/9608012

[CoLa] A.Connes, G.Landi *Noncommutative Manifolds, the Instanton Algebra and Isospectral Deformations* math/0011194

[DPS] M.Debert, M.Paschke, A.Sitarz In Vorbereitung

[G-BAM2] E.Alvarez, J.Gracia-Bondia, C.P.Martin A renormalization group analysis of the NCG constraints $m_{\text{top}} = 2m_{\text{W}}, m_{\text{Higgs}} = 3.14m_{\text{W}}$ Phys.Lett. B 329 (1994) 259-262

LITERATURVERZEICHNIS

[Kr-Diss] T.Krajewski Géométrie non commutative et interactions fondamentales thèse de doctorat, Marseille 1999

[LPS] G.Landi, M.Paschke, A.Sitarz In Vorbereitung

[MRD] **M.R. Douglas** *Two Lectures on D-Geometry and Noncommutative Geometry* hep-th/9901146

[P] **W. Pauli** *Connection between spin and statistics* Phys.Rev. 58 (1940) 716-722

[PAM-D] **P.A.M. Dirac** *Quantized singularities in the Electromagnetic Field* Proc.R.Soc. London Series A 133 (1931) 60-72

[SN] **S. Neuberger** *Sprichwörter aus Šimḥass hanefėš* Jiddistik Mitteilungen 16 (1996) 1-16

[PP] **N.A. Papadopoulos, J. Plass** *Natural extensions of the Connes-Lott and comparison with the Mainz-Marseille model* hep-th/9605072

[PS-tor] **M. Paschke, A. Sitarz** *In Vorbereitung*

[RH] **R. Häußling** *The su(2|1) model of electroweak interactions and its connections to noncommutative geometry* Vortrag auf der Tagung “The Standard Model of elementary particle physics from a mathematical-geometrical viewpoint”, Heselberg 1999

[TS] T.Schücker *Geometries and Forces* Vorlesungen auf der EMS-Sommerschule in Monsaraz, Portugal

[Sh] H.S.Snyder *Quantized Space-Time* 71 (1947) 38

[StW] F.W.Streater, A.S.Wightman *PCT, spin and statistics, and all that* Benjamin, New York 1964

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen der Arbeit direkt beigetragen haben.
Mein besonderer Dank gilt Florian Scheck, der stets ein offenes Ohr und einen nassen Schwamm für mich hatte. Ohne seine uneingeschränkte, vielfältige Unterstützung und vor allem seine Geduld wäre die Arbeit wohl kaum in dieser Form zustande gekommen.
Des Weiteren bin ich meinen tapferen Mitstreitern Rainer Häußling, Markus Debert, Tomas Kopf, Christian Pöselt und Andres Reyes zu Dank verpflichtet, die sich nur selten von meinen (geistigen) Kapriolen verwirren ließen.
Gianni Landi möchte ich für die Einladung zu Forschungsaufenthalten in Trieste und die warmerzhige Gastfreundschaft, mit der ich dort empfangen wurde, danken.
Den übrigen Mitgliedern der Thep sei für gute Laune gedankt, den “spektalen Triplern” aber auch für körperliche Ertüchtigung.