Synthese und Strukturierung von Polymeren Halbleitern: Triphenylamine und Triazine

Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften“

am Fachbereich Chemie und Pharmazie
der Johannes Gutenberg-Universität Mainz

Marc Behl
geboren in Wuppertal

Mainz 2004
Die vorliegende Arbeit wurde unter der Betreuung von Prof. Dr. Rudolf Zentel in der Zeit von Februar 2001 bis März 2004 am Institut für Organische Chemie der Johannes Gutenberg-Universität Mainz angefertigt.

Tag der mündlichen Prüfung: 25.06.2004
Am meisten bereut man das, was man nicht getan hat.

(frei nach William Somerset Maugham 1874-1965 englischer Schriftsteller)

Für Anja
VERWENDETE ABKÜRZUNGEN

1 EINLEITUNG
1.1 DIE FASZINATION LEITFAHiger KUNSTSTOFFE
1.2 LEITFAHigkeit in ORGANischen MATERIALien
1.2.1 LEITFAHigkeit von KUNSTSTOFFen allgemein
1.2.2 LEITFAHigkeit in konjugierten SYSTEMen
1.2.3 LEITFAHigkeit in nicht konjugierten SYSTEMen
1.3 ORGANISChe LEUCHTDIOden
1.3.1 AUFBAU und FUNKTIONSPRINZIP von OLEDs
1.3.2 POLARISIERte OLEDs
1.4 PHOTOVOLTAIK
1.5 STRUKTURIERUNGsmETHODEN
1.5.1 PHOTOSTRUKTURIERUNG
1.5.2 STRUKTURIERUNG DURCH PHOTINDUZIERTE DIFFUSION
1.6 DIE LEBENDE RADIKALISCHE POLYMERISATION
1.7 TRIPhenylamIn
1.7.1 EIGenschaften und SYNthese
1.7.2 POLYMere TRIPhenylamINE
1.8 TRIPhenylTRIAZINE UND POLYTRIPhenylTRIAZIzNE
1.8.1 EIGenschaften und SYNthese von TRIphenylTRIAZIzNEN
1.8.2 POLYMere TRIphenylTRIAZIzNE
2 ZIEL & AUFGABENSTELLUNG
3 ALLGEMEINER TEIL
3.1 TRIPhenylamIN UND TRIAZIN HOMO- UND BLOCKCOPOLYMERE
3.1.1 SYNTHESE DES UNIMERS
3.1.2 SYNTHESE DER TRIPHEnLYLamIN MONomERE (SIEHE 4.1.2)
3.1.3 LEBENDE RADIKALISCHE POLYMERISATION DER TRIPHEnLyLamINE (SIEHE 4.1.2 UND 4.2.2)
3.1.4 SYNTHESE DER TRIAZIN-MONomERE (SIEHE 4.2.2)
3.1.5 FREIE RADIKALISCHE POLYMERISATION DER TRIAZINE (SIEHE 4.2.2)
3.1.6 LEBENDE RADIKALISCHE POLYMERISATION DER TRIAZINE (SIEHE 4.2.2)
3.1.7 BLOCKCOPOLYMERISATION (SIEHE 4.2.2)
3.1.8 ELEKTROCHEMISCHE CHARAKTERISIERUNG (SIEHE 4.2.2)
3.2 STRUKTURIERUNG DURCH STEMPeln
3.2.1 STRUKTURIERUNG MIT HARTEN SILIZIUM-STEMPELN
3.2.1.1 Synthese von TriphenylamIn Monomeren (siehe 4.3.2)
3.2.1.2 Entwicklung eines neuen Strukturierungsprozesses (siehe 4.3.2)
3.2.2 STRUKTURIERUNG MIT WEICHEN SILIKON-STEMPELN (SIEHE 4.4.2)
3.2.3 ANWENDUNG DER STRUKTURIERTEN POLYTRIPHENYLAMINE (SIEHE 4.4.2)
3.3 STRUKTURIERUNG DURCH LICHT INDUZIERTE DIFFUSION (SIEHE 4.5.2)
3.3.1 VOREXPERIENTE
3.3.2 SYNTHESE VON VERBINDUNGEN MIT VERSCHIEDENEN COPOLYMERISATIONSPARAMETERN
3.3.3 UNTERSUCHUNGEN ZUR LICHT INDUZIERTEN DIFFUSION
4 PUBLIKATIONEN
4.1 TAYLORED SEMICONDUCTING POLYMERS: LIVING RADICAL POLYMERIZATION AND NLO-FUNCTIONALISATION OF TRIPHENYLAMINES
4.1.1 ZUSAMMENFASSUNG DER PUBLIKATION
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2</td>
<td>PUBLIKATION</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>BLOCKCOPOLYMERS BUILD UP OF ELECTRON AND HOLE TRANSPORT MATERIALS</td>
<td>99</td>
</tr>
<tr>
<td>4.2.1</td>
<td>ZUSAMMENFASSUNG DER PUBLIKATION</td>
<td>99</td>
</tr>
<tr>
<td>4.2.2</td>
<td>PUBLIKATION</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>TOWARDS PLASTIC ELECTRONICS: NEW PROCESS OF PATTERNING POLYMERS BY NANOIMPRINT LITHOGRAPH</td>
<td>127</td>
</tr>
<tr>
<td>4.3.1</td>
<td>ZUSAMMENFASSUNG DER PUBLIKATION</td>
<td>127</td>
</tr>
<tr>
<td>4.3.2</td>
<td>PUBLIKATION</td>
<td>129</td>
</tr>
<tr>
<td>4.4</td>
<td>NANOSTRUCTURED POLYTRIARYLAMINES: ORIENTATION LAYERS FOR POLYFLUORENE</td>
<td>141</td>
</tr>
<tr>
<td>4.4.1</td>
<td>ZUSAMMENFASSUNG DER PUBLIKATION</td>
<td>141</td>
</tr>
<tr>
<td>4.4.2</td>
<td>PUBLIKATION</td>
<td>143</td>
</tr>
<tr>
<td>4.5</td>
<td>LIGHT INDUCED CREATION OF P-N JUNCTIONS</td>
<td>149</td>
</tr>
<tr>
<td>4.5.1</td>
<td>ZUSAMMENFASSUNG DER PUBLIKATION</td>
<td>149</td>
</tr>
<tr>
<td>4.5.2</td>
<td>PUBLIKATION</td>
<td>151</td>
</tr>
<tr>
<td>4.5.3</td>
<td>NACHTRAG ZU DEN UNTERSUCHUNGEN DER LICHT-INDUZIERTEN TRENNUNG VON P- UND N-LEITERN</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>ZUSAMMENFASSUNG</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>LITERATURVERZEICHNIS</td>
<td>169</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AIBN</td>
<td>Azoisobutyronitril</td>
<td></td>
</tr>
<tr>
<td>Ag / AgCl</td>
<td>Silber-Silberchlorid</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Dublett (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>dd</td>
<td>Dublett vom Dublett (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>chemische Verschiebung (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>Diglyme</td>
<td>Diethylenglykoldimethylether</td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamid</td>
<td></td>
</tr>
<tr>
<td>DSC</td>
<td>„differential scanning calorimetry“ (Differential-Kalorimetrie)</td>
<td></td>
</tr>
<tr>
<td>FET</td>
<td>Feld-Effekt-Transistor</td>
<td></td>
</tr>
<tr>
<td>GPC</td>
<td>Gel-Permeations-Chromatographie</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Stunden</td>
<td></td>
</tr>
<tr>
<td>ITO</td>
<td>„indium tin oxide“ Indium-Zinnoxid</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Kopplungskonstante</td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>„liquid crystal“ Flüssigkristall</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Multiplett (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>Molekulargewicht (Zahlenmittel)</td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>Molekulargewicht (Gewichtsmittel)</td>
<td></td>
</tr>
<tr>
<td>NIL</td>
<td>„nanoimprint lithography“ Nanostempeln</td>
<td></td>
</tr>
<tr>
<td>NMR</td>
<td>„nuclear magnetic resonance“ (magnetische Kernresonanz Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>OLED</td>
<td>„organic light emitting diode“ (organische Leuchtdiode)</td>
<td></td>
</tr>
<tr>
<td>Pn</td>
<td>Polymerisationsgrad</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>„parts per million“ (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>Quartett (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Singulett (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Triplett (NMR-Spektroskopie)</td>
<td></td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-Tetramethylpiperidin-N-oxyl</td>
<td></td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
<td></td>
</tr>
<tr>
<td>TPA</td>
<td>Triphenylamin</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
<td></td>
</tr>
</tbody>
</table>
1 Einleitung
1.1 Die Faszination leitfähiger Kunststoffe

So finden sie z. B. Anwendung als Anti-Statik Beschichtungen, als Batterien, als photoelektroaktive Materialien in Photokopierern und Laserdruckern, als organische Leuchtdioden, elektronische Schaltkreise und vieles mehr. Weil dabei die elektronischen Eigenschaften von anorganischen Materialien mit der einfachen Form- und Strukturierbarkeit von Kunststoffen gepaart werden, beflügelt dies die Phantasie, so dass fast täglich neue Anwendungsbereiche für diese neue Art von Materialien gefunden werden.

Weil jedoch Kunststoffe dabei nicht die Leitfähigkeit von Kupfer oder Gold erreichen, bedarf es einer stetigen Optimierung sowohl der elektronischen als auch der Materialeigenschaft, um Anwendungen wie z. B. die oben aufgeführten zu ermöglichen.

zum Lösen der aufgezeigten Problemstellungen in der Strukturierung der Materialien besteht,
wird zudem auf Strukturierungsmethoden eingegangen. Zum Ende der Einleitung werden
Eigenschaften sowie Synthesemethoden der dabei verwendeten chemischen Systeme darge-
legt.

1.2 Leitfähigkeit in Organischen Materialien

1.2.1 Leitfähigkeit von Kunststoffen allgemein

Wie in Abbildung 1.1 zu sehen ist, kann die Leitfähigkeit von organischen Materialien über
25 Zehnerpotenzen (10^6 - 10^{-20} S/cm) variieren. Dieses Phänomen lässt sich mit den unter-
schiedlichen Ladungstransportmechanismen in organischen Materialien erklären. Während in
Metallen und anorganischen Leitern die Leitfähigkeit durch die Bewegung der Elektronen
entlang der Bandstrukturen entsteht, verhält es sich bei den organischen Halbleitern und Lei-
tern etwas anders.

In konjugierten Polymeren wie (Polyacetylen, Polyphenylen, usw.) erfolgt die Ladungsüber-
tragung hauptsächlich entlang des konjugierten π-Systems. In nicht-konjugierten organischen
leitfähigen Materialien erfolgt der Ladungstransport jedoch durch thermisch aktivierte Hüpf-
prozesse wobei die Ladungen mittels eines reversiblen Redox-Mechanismus ausgetauscht
werden. Beide Prinzipien sind nicht als absolut zu sehen, da es in einem konjugierten Polymer
genauso zu Hüpfprozessen zwischen den einzelnen Polymerketten kommen kann und in ei-
inem nicht konjugierten leitfähigen Material der Ladungsübertrag innerhalb einer Seitengruppe
auch entlang des konjugierten Systems erfolgen kann.

Allgemein lässt sich jedoch sagen, dass es sich bei den meisten organischen halbleitenden
Materialien um Lochleiter (p-Leiter) handelt. Dies ist in der Tatsache begründet, dass in bei-
den Fällen der Ladungsübertrag mit temporär gebildeten Carbo-Kationen erfolgt, wohingegen bei Elektronenleiter (n-Leiter) Carbo-Anionen die übertragende Spezies sind. Carbo-Anionen sind jedoch gegenüber Wasser und Sauerstoff wesentlich empfindlicher als Carbo-Kationen. Es gab daher die Aussage, dass n-leitende Materialien aufwendig verkapselt werden müssen, um sie gegen diese äußeren Einflüsse zu schützen[1].

Da der Ladungsübertrag in den konjugierten Systemen mehr der einfacher zu verstehenden Leitfähigkeit in Metallen entspricht, wird dieser zuerst behandelt.

1.2.2 Leitfähigkeit in konjugierten Systemen

![Chemische Strukturformeln](image)

Abbildung 1.2: verschiedene konjugierte leitfähige Polymere

Bei einem **Leiter** ist das Valenzband halb mit Elektronen besetzt. Die elektrische Leitfähigkeit erfolgt aus der Aufnahme bzw. Abgabe zusätzlicher Elektronen in das Valenzband. Bei einem **Nichtleiter** überlappen das Valenzband und das Leitungsband nicht. Der Zwischenraum zwischen den Bändern wird als „verbotene Zone“ bezeichnet, die z. B. im Falle von Kohlenstoff (in der Diamant Form) 5,2 eV beträgt. Ist die verbotene Zone jedoch sehr klein, z. B. 1,09 eV im Fall von α-Silizium, so können Elektronen durch thermische Anregung von dem Valenzband durch die verbotene Zone in das Leitungsband tunneln. Solche Systeme werden als **Halbleiter** bezeichnet.
1.2 Leitfähigkeit in Organischen Materialien

1.2.3 Leitfähigkeit in nicht konjugierten Systemen

Die beim Ladungstransport stattfindenden Hüpfprozesse werden durch das Modell von Bässler[3, 4] beschrieben. In diesem Modell werden vier Annahmen gemacht:

1. Die Verteilung der Hüpfenergien ist gaußförmig.
2. Die Sprungraten können nach einem Ausdruck von Miller und Abrahams beschrieben werden.
3. Die Elektron-Phonon-Kupplung ist ausreichend schwach, so dass polaronische Effekte vernachlässigt werden können.

Aufgrund dieser Annahmen im Modell folgt, dass die Ladungsträgerbeweglichkeit sowohl mit steigender Spannung als auch mit steigender Temperatur zunimmt. Weiterhin ist die Ladungsträgerbeweglichkeit abhängig von der Polarität des Materials und dem mittleren Abstand der einzelnen Redoxstellen, jedoch unabhängig vom Redoxpotential des verwendeten Materials. Borsenberger et al. konnten jedoch zeigen, dass bei niedermolekularem Triphenylamin, eingebracht in Polymermatrices, die Ladungsträgerbeweglichkeit mit steigendem Dipolmoment abnimmt[5].

Abbildung 1.5: Ladungstransport durch thermisch aktivierten Hüpfprozess

\[
\text{hv} \\
\text{e}^- \\
\text{\textsuperscript{\textcircled{\textit{O}}}}
\]

\[\text{p-Ladungstransport}\]
1.3 Organische Leuchtdioden

1.3.1 Aufbau und Funktionsprinzip von OLEDs

Neben der hohen Lebensdauer (100000 Stunden) zeichnen sich anorganische LEDs dabei auch mit einem hohen Wirkungsgrad aus. Dem steht jedoch eine komplizierte Herstellung mit den entsprechenden Kosten entgegen. Transportable Geräte (Notebooks) erfordern außerdem einen Betrieb zwischen 1 und 20 V.

Werden statt anorganischen Halbleitern organische halbleitende Materialien verwendet, so kann derselbe Elektrolumineszens-Effekt erzielt werden. Organische halbleitende Materialien bieten dabei den Vorteil, dass sie wesentlich einfacher strukturiert werden können. Einige dieser Strukturierungsmethoden werden in Kapitel 1.5 behandelt. Durch das einfachere Strukturieren können so großflächige Displays wesentlich kostengünstiger produziert werden. Darüber hinaus sind die organischen Halbleiter flexibel, so dass sich, bei der gleichzeitigen Verwendung von flexiblen Substraten, biegsame Displays, die zum Beispiel aufgerollt werden können, herstellen lassen sollten.

Der einfachste Aufbau hierfür ist eine Einschicht-OLED. Sie besteht aus dem organischen Halbleitenden Material, welches zwischen zwei Elektroden eingekapselt ist. Als Kathode muss ein Material mit niedriger Austrittsarbeit verwendet werden, welches negative Ladungen in das LUMO des halbleitenden Materials injiziert. Die hierfür verwendeten Materialien sind Aluminium, Magnesium oder Calcium. Die Anode muss im Gegensatz dazu ein hohe Aus-
1.3 Organische Leuchtdioden

\[E = h \nu \]

Abbildung 1.6: Aufbau einer Einschicht-OLED

Zur Verdeutlichung ist in Abbildung 1.6 der allgemeine Aufbau einer Organischen Einschicht-LED dargestellt. Auf dem transparenten Substrat, bei dem es sich z. B. um Glas, aber auch eine Folie handeln kann, wird die Anode als dünne Schicht aufgebracht. Darauf folgt
1.3 Organische Leuchtdioden

eine circa 100 nm dicke Schicht des organischen Halbleiters, die mit der Kathode abgeschlossen wird. Als Kathode werden verschiedene Metalle aufgedampft. Das ganze System hat etwa eine Dicke von circa 500 nm.

Abbildung 1.7: Rekombination der Ladungsträger in der Einschicht-OLED und Zweischicht-OLED

Dieses Problem lässt sich jedoch durch die Kombination der Lochtransportschicht mit einer zweiten Ladungstransportschicht aus einem Elektronen leitenden Material lösen (Abbildung 1.7). In dieser so genannten Zweischicht-LED wirkt die Lochtransportschicht als Sperrschicht für die Elektronen und andereserum wirkt die Elektronenleiterschicht als Sperrschicht für die Löcher. Die Rekombination findet daher in der Grenzschicht zwischen beiden Ladungsträgem statt. Da jedoch nicht alle gut halbleitenden Materialien auch zugleich gute Emitter sind, lässt sich das Prinzip mit der Dreischicht-LED noch weiter verfeinern. Bei dieser Variante wird zwischen Elektronen- und Lochleiter noch eine dritte Schicht, die Emissionsschicht, eingebracht, in der die Rekombination dann stattfindet.
Ein Problem bei allen organischen LEDs, die auf niedermolekularen Verbindungen beruhen, ist die Kristallisation selbiger, da dies zu einer Behinderung der Ladungsübertragung an den Korngrenzen führt. Eine Möglichkeit, solche Korngrenzen zu verhindern, ist die Einbringung des Materials in nicht leitende, dafür jedoch gut prozessierbare Polymere\cite{12}. Der Vorteil bei dieser Möglichkeit ist, dass so die elektronischen Eigenschaften unabhängig von den Filmegenschaften des Polymers optimiert werden können. Die Feldeffektbeweglichkeit ist dabei von der Konzentration des halbleitenden Materials abhängig. Allerdings ist die Feldeffektbeweglichkeit von solchen Komposit-Materialien deutlich geringer als bei den reinen Materialien. Darüber hinaus kann es über einen längeren Zeitraum zur Phasenseparation kommen. Durch die polymeranaloge Umsetzung der elektroaktiven Materialien mit einem Polymer kann diese Phasenseparation umgangen werden, und amorphe Filme mit hohen Glastemperaturen sind so zugänglich\cite{13}. Allerdings wirft dieses die Idee auf, die elektroaktiven Materialien direkt zu polymerisieren. Im Jahr 1990 berichtet Friend et al. über Elektrolumineszenz in Polyphenylenvinyliden\cite{14}. Seitdem wird die Anwendung von Polymeren in Leuchtdioden intensiv erforscht.

Obwohl es mittlerweile möglich ist, alle für ein Display benötigten Farben mittels OLEDs herzustellen, ist bei den bisher verwendeten Materialien die unterschiedliche Langzeitstabilität problematisch. So kommt es nach wenigen hundert Betriebsstunden zu Farbverfälschungen.

Es gibt daher die Idee, die Vorteile von OLEDs mit denen der etablierten Flüssigkristalldisplay-Technologie zu kombinieren. Um diese Idee detaillierter zu erläutern, wird im Folgenden zuerst der Aufbau eines klassischen Flüssigkristalldisplays beschrieben. Eine Flüssigkristall-Zelle besteht aus zwei ITO-Elektroden, auf denen geriebenes Polyimid als Orientierungs-schicht aufgebracht wurde. Zwischen dem Polyimid wird ein nematischer Flüssigkristall auf-
gebracht. Der Flüssigkristall ordnet sich dabei parallel zur Reibrichtung an. Da jedoch die Reibrichtungen des Polyimids um 90° verdreht angeordnet sind, erfährt der Flüssigkristall eine Drehung und nimmt eine verdrillte (so genannte twisted nematic) Konformation ein. Dies hat zur Folge, dass die Polarisationsebene von linear polarisiertem Licht beim Passieren dieser Anordnung um 90° gedreht wird. Auch wenn diese LC-Zelle sich dann zwischen zwei gekreuzten Polarisatoren befindet, so ist es doch möglich, dass Licht sie ungehindert passieren kann.

Wird jedoch an den ITO-Elektroden eine Spannung angelegt, so folgen die Flüssigkristalle dem elektromagnetischen Feld und orientieren sich senkrecht zu den Orientierungsschichten. Dies hat zur Folge, dass linear polarisiertes Licht nicht mehr um 90° gedreht und somit die Anordnung für Licht undurchlässig wird.

Abbildung 1.8: Funktionsweise eines Flüssigkristall-Displays

1.3.2 Polarisierte OLEDs

Aufgrund des starken Interesses an OLEDs, die polariertes Licht emittieren, gibt es mehrere Ansätze, eine Orientierung der emittierenden Materialien zu erreichen. Im Fall der organischen Materialien wurde dies durch mehrere Methoden erreicht\cite{15}. Eine Möglichkeit dazu ist die Nutzung von mechanischen Techniken wie Strecken\cite{16, 17} oder direktes Reiben\cite{18-21}. So wurden zum Beispiel fluoreszierende Polymere mit Polyethylen gemischt. Durch das Strecken dieses Blends kommt es dabei zur Orientierung des fluoreszierenden Polymers in Zugrichtung. Allerdings ist die Reproduzierbarkeit der Schichtdicke ein Problem. Beim direkten Reiben werden die fluoreszierenden Polymere mit denselben Verfahren gerieben, wie es auch zur Herstellung von geriebenem Polyimid verwendet wird. So konnten durch das Reiben von Emissionsschichten aus Poly-2,5-dinonyl-1,4-phenylen-vinylen Elektrolumineszenzanisotropien von bis zu 4,0 erreicht werden\cite{18}. Es ergibt sich beim direkten Reiben jedoch das Problem, dass der Orientierungsgrad mit zunehmenden Abstand von der geriebenen Oberfläche abnimmt.

Wesentlich intelligenter ist daher die Ablagerung der emittierenden Spezies in einer Lagmuir-Blodget (LB) Technik. Diese erlaubt eine „Schicht für Schicht“-weise molekulare Kontrolle der Film-Orientierung. Es konnte gezeigt werden, dass die Moleküle sich parallel zur Tauchrichtung orientieren. Diese LB-Technik zur Orientierung der Emissionsschicht von konjugierten Licht emittierenden Polymeren wurde zuerst von Neher et al. angewendet\cite{22, 23}; weitere Arbeitsgruppen folgten\cite{24, 25}. Allerdings ist die Herstellung entsprechender Bauteile sehr Zeit aufwendig und daher für die Massenproduktion ungeeignet.

Alternativ ist es jedoch auch möglich, flüssigkristalline fluoreszierende Materialien auf geeigneten Orientierungsschichten zu orientieren. Diese Methode zum Aufbau einer polarisierten OLED wurde erstmals von Luessem et al. demonstriert\cite{26}. In dem Experiment wurde auf einer geriebenen Polyimidschicht ein konjugiertes flüssigkristallines Polymer mit flexiblen Spacern orientiert. Das Polarisationsverhältnis der polarisierten Elektrolumineszenz lag dabei bei ungefähr 6, wobei jedoch keine Details über die Effektivität und die Helligkeit genannt wurden.

Vor nicht all zu langer Zeit konnte nachgewiesen werden, dass flüssigkristallines Polyfluoren auf geriebenem Polyimid orientier\cite{15, 27-29}. Polyfluoren ist ein thermotropes flüssigkristallines Polymer mit einem bemerkenswerten Potential für elektrooptische Anwendungen\cite{30-36}. Bisher aufgebaute OLEDs, die auf orientierten Polyfluoren-Schichten basierten, zeigten dabei hohe Orientierungsgrade und eine gute Helligkeit.
Anfangs wurde dabei geriebenes Polyimid verwendet, welches mit Lochleitern dotiert war, um einen ausreichenden Ladungstransport durch die Orientierungsschicht zu gewährleisten\cite{21, 28}. Durch die Verwendung von Polyphénylvinilen, welches nach teilweiser Umsetzung gerieben wurde, konnte die Effektivität wesentlich erhöht werden\cite{29}.

Beim Reiben entstehen in dem Polymer (Polyimid, PPV) parallele Gräben mit einer Breite von 100 – 200 nm, die auch als Riefen bezeichnet werden. Entlang dieser Gräben orientiert sich die flüssigkristalline Phase, so dass eine polarisierte Emission beobachtet werden kann. Die Herstellung dieser Orientierungsschichten beansprucht viel Zeit bei hohen Temperaturen. Außerdem wird die Orientierungsschicht durch das Reiben mechanisch beschädigt und es entstehen elektrostatische Aufladungseffekte.

Es müssen daher alternative Methoden der Strukturierung des halbleitenden Materials gefunden werden. Einige dieser Methoden werden im Kapitel 1.5 erläutert. Werden dabei außerdem die Strukturen, wie sie beim Reiben entstehen, nachgebildet, so lassen sich diese Strukturen als Orientierungsschicht verwenden.

![Abbildung 1.9: Oberflächenstrukturiertes Loch-Leiter als Orientierungsschicht](image)

1.4 Photovoltaik

Allerdings hat jede der hier aufgeführten Energien Vor- und Nachteile. So wird bei den konventionellen Energien, die aus Erdöl und Kohle bestehen, allgemein davon ausgegangen, dass ihre Reserven in circa 50 Jahren erschöpft sind. Ein weiterer Effekt, der sehr kontrovers diskutiert wird, ist die globale Erwärmung auf Grund des als Treibhauseffekts bekannten höheren CO₂-Anteils in der Atmosphäre. Energie aus Atomstrom würde noch einige Jahrhunderte ausreichen, jedoch besteht hier das Problem der Wiederaufarbeitung bzw. Endlagerung der

Abbildung 1.10: Funktionsprinzip der Solarzelle
Polykristalline Zellen sind in der Energiebilanz zur Herstellung wesentlich genügsamer, allerdings liegt ihr Wirkungsgrad bei nur 8-13%. Es gibt daher stetige Bemühungen, Photovoltaikzellen zu entwickeln, die einen höheren Wirkungsgrad mit einer vergleichsweise niedrigen Energiebilanz aufweisen. Einige dieser Bemühungen werden im Folgenden kurz angerissen.

1.5 Strukturierungsmethoden

1.5.1 Photostrukturierung

Eine der am häufigsten angewendeten Strukturierungsmethoden in der Halbleitertechnik ist die Photolithographie. Durch diese Methode werden auf das halbleitende Material aufgebrachte Schutzlacke strukturiert, so dass es in einem nachfolgenden Ätzprozess möglich ist, das halbleitende Material zu strukturieren\([42]\). Werden statt Schutzlacken jedoch aktiv leitfähige Materialien verwendet, so können durch diese Methode auch direk t leitfähige Strukturen generiert werden\([43-45]\).

Abbildung 1.11 zeigt den Prozess der Photostrukturierung. Zuerst wird in einem als Spincoating bezeichneten Prozess das Polymer bzw. Monomer aus einer Lösung auf das Substrat aufgeschleudert. Je nach Konzentration und Rotationsgeschwindigkeit können dabei...
Filmdicken zwischen 0,1 und 1 µm eingestellt werden. In dem als Belichten bezeichneten Prozess wird der so erhaltene Film durch eine Maske mit UV-Licht bestrahlt. Dabei werden an den bestrahlten Flächen Photoreaktionen initiert, die in einer veränderten Löslichkeit des bestrahlten Films resultieren. Je nach Wahl des Polymeren bzw. Monomers oder des Lösungsmittels kann dabei der bestrahlte (Positiv-Resist) oder der unbelichtete (Negativ-Resist) Film zurückbleiben. Mittels geeigneter Masken und komplizierter Linsensysteme zur Belichtung ist es mittlerweile möglich, Strukturen von 95 nm zu erhalten, wobei die Größe der Strukturen der Hälfte des eingestrahlten Lichtes entspricht. Da Licht mit einer Wellenlänge deutlich kleiner als 200 nm durch Anregung von $\sigma \rightarrow \sigma^*$ Absorptionen in fast jeder Materie absorbiert und seine Handhabung dadurch entsprechend schwer wird, sollte damit die Grenze der Miniaturisierung allmählich erreicht sein.

![Abbildung 1.12: Strukturieren durch NIL](image)

1.5 Strukturierungsmethoden

auf bzw. unter T_g und das als Sticking bezeichnete Problem, bei dem das Polymer nach dem Abkühlen an dem Stempel klebt und es während des Abhebens zu Filmabrissen kommt. Um die Vorteile der Photoreaktion, die eine sehr schnelle Reaktion ist, mit den Vorteilen des Hot Embossing zu nutzen, wurde das Stempeln mit Quarzglasstempeln entwickelt. Bei dieser Methode wird ein strukturierter Quarzglasstempel auf einen Monomerfilm aufgebracht. Dieser wird anschließend durch den Stempel hindurch mit UV-Licht bestrahlt. Der Vorteil der schnellen Bestrahlung wird jedoch durch die Limitierung der Quarzglasstempel, die denselben Interferenz- und Beugungsproblemen wie die Masken unterworfen sind, erkauft.

\[
\text{Lucirin-TPO}
\]

Abbildung 1.13: Lucirin-TPO als Beispiel eines Radikalphotoinitiators

1.5.2 Strukturierung durch photoinduzierte Diffusion

Licht ist nicht nur ein praktisches Reaktionsmittel, um Materialien durch Polymerisation zu strukturieren. Mit ihm kann das Material auch in sich, z. B. durch Photoisomerisierung oder Photodissozierung, strukturiert werden. So kann z. B. in einem cholesterischen Polymernetzwerk die helicale Ganghöhe durch Bestrahlung einer photopolymerisierbaren cholesterischen Flüssigkristallmischung durch einen UV-Gradienten eingestellt werden\cite{48}. Eine weitere Mög-
lichkeit zum Herstellen von sehr komplexen Strukturen ist die Ausnutzung der photoinduzierten Diffusion49. Diese lässt sich wie folgt vorstellen: Wird ein Monomerfilm durch eine Maske bestrahlt, so kommt es an den bestrahlten Stellen zur Polymerisation. Diese Polymerisation entzieht jedoch das Monomer aus dem Gleichgewicht, so dass unreagiertes Monomer erneut in die bestrahlten Flächen einströmt, um das Konzentrationsgefälle auszugleichen, und dort sofort wieder durch Polymerisation abgereagiert. Die Lichtintensität kann dabei nicht nur mit Photomasken, sondern auch durch holographische Gitter kontrolliert werden.

\begin{figure}[h!]
\centering
\includegraphics[width=\textwidth]{diffusion_diagram.png}
\caption{Abbildung 1.14: Photoinduzierte Diffusion von zwei Monomeren}
\end{figure}
1.6 Die lebende radikalische Polymerisation

Unter der Vielzahl der Möglichkeiten, aus Monomeren Polymere zu synthetisieren, wie z.B. Polykondensation, Polyaddition und Polymerisation, nehmen die sogenannten lebenden Polymerisationen einen besonders großen Stellenwert ein. Diese zeichnen sich dadurch aus, dass es während der Polymerisation zu fast keiner Abbruch-Reaktion der reaktiven Spezies kommt. Kommt es doch zu einem Abbruch, so sollte er in solch einer Weise erfolgen, dass die reaktive Spezies in eine schlafende Spezies umgewandelt wird. Es muss jedoch leicht wieder möglich sein, diese schlafende Spezies in eine reaktive umzuwandeln. Allgemein weisen lebende Polymerisationsmethoden eine enge Molekulargewichtsverteilung (d < 1,5) auf, die einer Poisson-Verteilung folgen. Im Gegensatz dazu liegt den „normalen“ Polymerisationsverfahren, die eine breite Molekulargewichtsverteilung haben (d >> 2), eine Gauß-Verteilung zu Grunde.

Weiterhin bieten die lebenden Polymerisationsverfahren die Möglichkeit, durch unterschiedliche Monomerzugabe Blockcopolymere zu erzeugen, da bei es bei ihnen faktisch zu keiner Abbruch-Reaktion kommt. Dies ist in solch einer Weise möglich, dass Monomer A zu dem Polymer PA polymerisiert und anschließend isoliert wird. Durch Reinitiierung und Polymerisation mit Monomer B bildet sich das Block-Copolymer PA-PB.

Lange bekannt unter den lebenden Polymerisationsverfahren sind die ionisch initiierten, vor allem die lebende anionische Polymerisation. Dabei ist es nötig, hochreine Monomere und Lösungsmittel zu verwenden, um Abbruch-Reaktionen zu minimieren. Daher stellen diese Verfahren durch diese hohen Reinheitsanforderungen an verwendeten Chemikalien und Apparaturen eine hohe synthetische Herausforderung dar und reagieren weiterhin sehr sensibel auf eine Vielzahl von funktionellen Gruppen.

Die lebende radikalische Polymerisation 29

die Disproportionierungs- und Übertragungs-Reaktionen. Dabei ist der Polymerisationsgrad
der gebildeten Makromoleküle im stationären Zustand unabhängig vom Monomerumsatz.

Bei der TEMPO-moderierten Polymerisation jedoch wird die Konzentration an aktiver Spe-
zies durch die reversible Reaktion mit dem Terminator-Molekül, in diesem Fall TEMPO, her-
abgesetzt. Weil dabei das Gleichgewicht auf der Seite der terminierten, inaktiven Spezies
liegt, wird die Wahrscheinlichkeit der Abbruch-Reaktion der aktiven Spezies untereinander zu
Gunsten eines Wachstumsschrittes durch Reaktion mit einem Monomer, das in hoher Kon-
zentration vorliegt, verschoben. Der Polymerisationsgrad der gebildeten Makromoleküle
steigt dabei linear mit dem Monomerumsatz an. Eine Folge der unterdrückten Abbruch-
Reaktion ist dabei eine geringe Molekulargewichtsverteilung mit $d \leq 1,3$. Jedoch wird dabei
gleichzeitig aufgrund der geringen Konzentration an aktiver Spezies die Polymerisations-
Geschwindigkeit deutlich verlangsamt. Durch Zusatz von Camphersulfonsäure ist jedoch eine
Steigerung der Reaktionsgeschwindigkeit möglich[58].

Bei der lebend radikalischen Polymerisation, die sich auf TEMPO stützt, lassen sich drei Va-
rianten unterscheiden. Bei der ersten Variante wird das reine TEMPO als Katalysator einge-
setzt. Bei der zweiten Variante wird ein Gemisch aus TEMPO und Benzoylperoxid (Mi-
schungsverhältnis 1,3:1) eingesetzt, da dies eine bessere Kontrolle über das Molekulargewicht
und die Uneinheitlichkeit ermöglicht[59]. Bei beiden Varianten ist es jedoch schwer, die Initia-
torkonzentration in Form von TEMPO genau einzustellen, da die Effizienz der Radikal-
Initierung für viele Initiator-Monomer-Kombinationen unbekannt ist. Ist die Konzentration
zu hoch, so resultiert dies in einer Verbreiterung der Polydispersität durch Abbruch-
Reaktionen, während bei zu geringer Konzentration eine langsame Polymerisationsgeschwin-
digkeit die Folge ist. Diese Problematik wird durch die dritte Variante umgangen, bei der ein
TEMPO substituiertes Monomer, ein sogenanntes Unimer, eingesetzt wird[60]. Dieses gewähr-
leistet eine 1:1 Stöchiometrie von Monomerradikalen und Terminatormolekülen und benötigt
keine Induktionsphase.

![Abbildung 1.17: Styrol-Unimer](image-url)
Ein gebräuchliches Unimer ist das Stryrol Unimer, welches in Abbildung 1.20 aufgeführt ist und durch Reaktion von Ethylbenzol mit TEMPO hergestellt werden kann. Das oben aufgeführte Schema ist dann immer noch gültig, bei ihm gilt dann der Spezialfall $n = 0$.

1.7 Triphenylamin

1.7.1 Eigenschaften und Synthese

Triphenylamin (TPA) ist eine schwache Base ($pK_a > 14$) mit einem schwachen Diplolmoment. Es ist gut löslich in Lösemitteln mittlerer und hoher Polarität, in protischen jedoch nicht. TPA ist eine farblose Substanz, die bei 127 °C schmilzt und bei 365 °C siedet. Im Gegensatz zu Diphenylamin oder Trimethylamin ist es weder giftig noch umweltgefährdend.

Die Konformation des Moleküls ist dabei Propeller- [61], da die Phenylringe um ca. 45° um die C-N Bindung aus der Molekülebene herausgedreht sind. Die Bindungslänge ist mit 1,42 A im Gegensatz zu 1,47 A bei Trimethylamin verkürzt, da es zu einer Überlappung des sp²-hybridisierten Stickstoffes mit den π-Systemen der Phenylringe kommt.

Abbildung 1.18: Triphenylamin

Triphenylamin ist ein guter Lochleiter. So beträgt sein Oxidationspotential in Aceton- Lösung nur 0,88 V [62]. Gleichzeitig ist TPA jedoch auch ein Lochleiter mit einer sehr schnellen Ladungsträgerbeweglichkeit. So erreichen nur 40%-ige Gemische von TPA in Polystyrol schon Ladungsträgerbeweglichkeiten von $10^{-4}\, \text{cm}^2/\text{Vs}$ [63], und bei niedermolekularen Triphenylaminen sind sogar Ladungsträgerbeweglichkeiten von bis zu $10^{-2} \, \text{cm}^2/\text{Vs}$ [63] erreichbar.

1.7.2 Polymere Triphenylamine

All diese Synthesen leiden jedoch an der konformellen Steifigkeit der Triphenylamin-Gruppe. Die Folge ist, dass bei den oben aufgeführten Synthesen eher Oligomere als Polymere erhalten werden. Erst durch das Einbringen flexibler Gruppen können höhere Molekulargewichte
erreicht werden, so konnte Thelakkat et al. das bisher höchstmolekulare Hauptkenn-
Triphenylamin-Polymer mit einem Molekulargewicht von 16 kg/mol durch das Einbringen
flexibler Ether-Gruppen synthetisieren[72]. Dieses Material, als Lochleiterschicht für Organi-
sche Leuchtdioden konzipiert, hat ein Oxidationspotential von $E_{ox} = 0,37$ V gegen Ferrocen.

Triphenylamin-Seitenketten-Polymere sind ebenfalls in der Literatur beschrieben. Aufgrund
der geringeren Steifigkeit sind dabei die berichteten Molekulargewichte meist höher als bei
den Seitenkettenpolymeren. Die einfachste Methode ist dabei die polymeranaloge Ullmannre-
aktion von p-Iod-poly-Styrol mit Diphenylamin[73]. Dies führt zu statistischen Iod-
styrol/Diphenylaminostyrol Copolymeren.

Durch die Funktionalisierung von TPA-Gruppen mit Acrylatgruppen konnte Wada et al. ent-
sprechende Homopolymere gezielt aufbauen[74]. Eine weitere Polymerisationsmethode ist die
ringöffnende Metathesereaktion von TPA-funktionalisierten Norbonen[75]. Dabei wird von
Molekulargewichten von 62 kg/mol berichtet. Allerdings enthalten diese Polymere aufgrund
des großen Gewichtsanteils des Polynorbonens wesentlich kleinere Anteile an Triphenylamin.
Obwohl Poly-p-Diphenylaminostyrole schon lange bekannt sind, sind die dabei angegebenen Polymerisationsgrade eher gering. So konnte z. B. Poly-p(Diphenylaminostryol) sowohl kationisch, ohne eine Angabe eines Molekulargewichtes[76], anionisch[77] (Mn = 9,5 kg/mol) als auch frei radikalisch[77] (Mn ∼ 5,5 kg/mol) synthetisiert werden.

Erst mit der radikalischen Polymerisation dieses Systems unter Trommsdorf-Bedingungen von Hattemer et al. konnten hohe Molekulargewichte mit bis zu 200 kg / mol erzielt werden[78].
1.8 Triphenyltriazine und Polytriphenyltriazine

1.8.1 Eigenschaften und Synthese von Triphenyltriazinen

![Abbildung 1.19: Saure und basische Cyclotrimerisierung von Triazin](image)

Die wesentliche Voraussetzung für die Herstellung von polymeren Triazinen ist die Synthese von unsymmetrisch substituierten Triazin-Systemen. In der Literatur sind dazu jedoch nur wenige Darstellungswege bekannt. Eine Möglichkeit ist die Ringschlussreaktion von N-

Abbildung 1.20: Synthese von Triazinen mit Chlormethyleniminium-Salzen

Die zweite Variante nutzt die Ringschlussreaktion von Benzamidinen mit Benzosäureanhydriden bzw. Schiff-Basen.

Abbildung 1.21: Synthese von Triazinen durch Kondensation von Benzamidinen und Schiff-Basen

Abbildung 1.22: Synthese von Triazinen unter AlCl₃ Katalyse

Abbildung 1.23: Mechanismus der AlCl₃ katalysierten Traizin Synthese
1.8.2 Polymere Triphenyltriazine

Niedermolekulare und oligomere Triazine wurden von Fink80 synthetisiert. An diesen Verbindungen konnte gezeigt werden, dass es sich bei ihnen um effektive Elektronenleiter handelt, deren Elektronenaffinität durch Substituenten wie Pyridin oder Chinolin noch weiter gesteigert werden konnte81. Für dimere und tetramere Triazin-Ether wurde aufgrund der starken Elektronen schiebenden Phenoxy-Gruppen eine Verschiebung zu kleineren Reduktions-Potentialen beobachtet82.

Nachdem diese Arbeit begonnen wurde, wurden erstmals Seitenketten-Triazine durch Polymerisation von Methacrylat-funktionalisierten Triazinen hergestellt83.
2 Ziel & Aufgabenstellung
Wie in der Einleitung dargelegt wurde, ist die Nutzung von halbleitenden Materialien eng mit geeigneten Strukturierungskonzepten verknüpft.

Ziel dieser Arbeit war daher die Synthese von polymeren Loch- und Elektronen-leitenden Materialien mit dem speziellen Ziel, sie für unterschiedliche Strukturierungsmethoden verwenden zu können.

Als Lochleiter sollten Triphenylamine gewählt werden, da sie für ihre hohe Ladungsträgerbeweglichkeit bekannt sind. Um eine größere Löslichkeit zu erreichen, sind die Triphenylamine entsprechend mit Substituenten zu modifizieren. Um die so hergestellten Verbindungen zu polymerisieren, sind sie mit entsprechend reaktiven Gruppen zu funktionalisieren.

Zur Strukturierung durch Selbstorganisation im nm-Bereich soll versucht werden, Blockcopolymere herzustellen. Hierzu sollen Methoden der lebenden radikalischen Polymerisation verwendet werden.
Im folgenden Allgemeinen Teil werden die Ergebnisse der Arbeit zusammengefasst. Im Anschluss daran werden sie im 4. Teil (Publikationen) genauer diskutiert.
3 Allgemeiner Teil
3.1 Triphenylamin und Triazin Homo- und Blockcopolymere

3.1.1 Synthese des Unimers

Abbildung 3.1: Schematische Synthese des Unimers

Da die Unimer katalysierte lebende radikalische Polymerisation nur mit Styrol und seinen Derivaten funktioniert, sind all diejenigen Monomere, die lebend radikalisch polymerisiert werden sollen, mit entsprechenden Vinylgruppen zu modifizieren.

3.1.2 Synthese der Triphenylamin Monomere (siehe 4.1.2)

Mit einer Vilsmeier-Formylierung wurden die so hergestellten Verbindungen mit einer Aldehydgruppe modifiziert. Dabei konnte gezeigt werden, dass sich bei der Verwendung von N-Methylformanilid im Gegensatz die Dimethylformamid wesentlich größere Ausbeuten erzie-
len lassen. Mittels einer Wittig-Synthese konnten die so hergestellten Diphenylaminobenzaldehyde zu Diphenylaminostyrolen umgesetzt werden.

Abbildung 3.2: Schematische Synthese symmetrisch substituierter Triphenylamine

Darüber hinaus konnte ich zeigen, dass durch Variation der verwendeten Edukte auch unsymmetrisch substituierte Verbindungen auf einfachem Wege zugänglich sind.

Abbildung 3.3: Schematische Synthese unsymmetrisch substituierter Triphenylamine

Um zu zeigen, dass sich die so hergestellten Monomere generell polymerisieren lassen und es nicht zu einer möglichen Redox-Reaktion mit dem Stickstoff der Triphenylamingruppe
kommt, wurden die Monomere zunächst frei radikalisch mit ABIN als Initiator polymerisiert. Die Polymerisation erfolgte dabei in THF als Lösungsmittel über einer Stickstoffatmosphäre.

3.1.3 Lebende radikalische Polymerisation der Triphenylamine (siehe 4.1.2 und 4.2.2)

![Schematische Polymerisation der Triphenylamine](image)

Durch das Einstellen des Monomer-zu-Initiator-Verhältnisses war es dabei möglich, das Molekulargewicht des Polymers zu steuern und somit den lebenden Charakter der Polymerisation zu demonstrieren.

3.1 Triphenylamin und Triazin Homo- und Blockcopolymere

Abbildung 3.5: Abhängigkeit der Glastemperatur vom Monomer und Polymerisationsgrad

3.1.4 Synthese der Triazin-Monomere (siehe 4.2.2)

Abbildung 3.6: Syntheseschema der Triazine mittels AlCl₃-Katalyse

Als Elektronen leitende Verbindungsklasse wurden 1,3,5-Triphenyltriazine synthetisiert. Aufgrund der synthetischen Einfachheit wurde dabei die Methode über die Aluminiumchlorid-katalysierte Austausch-Reaktion verwendet. Da die drei Phenylringe des Triazins aufgrund des starken –I Effektes des Triazin-Kernrings an Elektronen verarmt sind, kann an ihnen kei-

Da von diesen Verbindungen nichts über die Löslichkeit (insbesondere in Diethylenglycoldimethylether [Diglyme]) bekannt war, wurden die Triazine mit verschieden langen Alkylgruppen modifiziert. Die Löslichkeit in Diglyme ist für die im weiteren Verlauf geplante lebende radikalische Polymerisation besonders wichtig. Wenn die dafür benötigten Nitrile nicht kommerziell zugänglich waren, wurden diese entsprechend nachfolgendem Syntheseschema hergestellt.

Abbildung 3.7: Syntheseschema der Nitrile

Abbildung 3.8: Schematische Synthese eines Triazins über eine Schiffbase und einem Amidin

Da die Wittig-Reaktion eines Aldehyds zu der Styrolverbindung von der Synthese der Triphenylaminderivate bekannt war, wurde versucht, dieses Reaktionsschema auch auf die Triazine anzuwenden. Dazu wurden die so hergestellten Verbindungen erst lithiiert und dann mit DMF umgesetzt, um so die Formylgruppe einzuführen. Es zeigte sich jedoch, dass diese Reaktion nur zu sehr geringen Ausbeuten führt, so dass damit die Ausbeute der Triazin-Monomere limitiert war.

Betrachtet man die Synthese der Triazin-Monomere, so ist zu sagen, dass mit der hier vorgestellten Syntheseroute über die AlCl₃-katalysierte Umlagerung eines von drei Nitrilen und einem Säurechlorid eine effektive Synthese, die bei Vorhandensein der entsprechenden Nitrilen in zwei Stufen abläuft, zur Verfügung steht. Sollte diese Syntheseroute aus welchen Gründen auch immer nicht funktionieren, so steht mit der Kondensation einer Schiffbase und zwei Amidinen eine sinnvolle Alternativ-Methode zur Verfügung.
3.1.5 Freie radikalische Polymerisation der Triazine (siehe 4.2.2)

3.1.6 Lebende radikalische Polymerisation der Triazine (siehe 4.2.2)

Abbildung 3.11: Schematische lebende Radikalische Polymerisation der Triazine

Die dabei erhaltenen Polymere weisen dabei eine relativ enge Verteilung der Polydispersität auf. Auch wenn sie nicht so eng verteilt sind, wie bei dies Styrol als Modellverbindung der Fall ist, so ist doch anhand der engen Polydispersität der lebende Charakter der Polymerisati-
on deutlich zu erkennen. Die Kontrolle des Polymerisationsgrades erwies sich im Fall der Triazine wesentlich schwieriger als im Fall der Triphenylamine. Es zeigte sich, dass der Polymerisationsgrad in etwa doppelt so hoch eingestellt werden muss wie gewünscht.

3.1.7 Blockcopolymerisation (siehe 4.2.2)

Die Blockbildung konnte dabei anhand von GPC-Messungen durch Überlagerung des Chromatogramms des Edukt-Polymers mit dem des Produkt-Polymers nachgewiesen werden. Dabei zeigte sich, dass es in einigen Fällen anscheinend zu Abbruch-Reaktionen kam, was sich in einem Edukt-Peak im Chromatogramm des Blockcopolymers äußerte. Ein Vermutung war eine Radikal-Redox-Reaktion zwischen dem Triphenylamin-Homoblock und dem Triazin,
weshalb zwischen beiden ein kleiner Stryolblock eingeführt wurde. Diese Vermutung konnte jedoch nicht bestätigt werden, da auch bei diesen Blöcken das Edukt im Blockcopolymer wiedergefunden werden konnte.

Ein weiterer Nachweis für Blockcopolymere war durch DSC-Messungen möglich, in denen bei vielen Blockcopolymeren zwei Glasstufen gefunden werden konnte. Dies spricht für microphasenseparierte Blockcopolymere.

3.1.8 Elektrochemische Charakterisierung (siehe 4.2.2)

Abbildung 3.15: Schnitzeichnung der entwickelten Messanordnung zur cyclovoltametrischen Bestimmung von Polymerfilmen

Um die Polymerproben zu charakterisieren, wurde eine bestehende Cyclovoltammetrie-Apparatur so umgebaut, dass mit ihr elektroaktive Substanzen nicht in Lösung, sondern als Film auf einer Glaskohlenstoff-Elektrode vermessen werden konnten.

Um eine größere Empfindlichkeit zu erreichen, wurde dabei ein Platin-Netz als Gegenelektrode statt einer Glaskohlenstoff-Elektrode verwendet.

Exemplarisch sind hier an dieser Stelle die Cyclovoltamogramme des Blockcopolymers BC-P7/P25 bei negativem und positivem Spannungsbereich gezeigt. Deutlich sind die Elektronenleitfähigkeit im negativen Spannungsbereich und die Lochleitereigenschaften bei positivem Potential zu erkennen.

3.2 Strukturierung durch Stempeln

3.2.1 Strukturierung mit harten Silizium-Stempeln

3.2.1.1 Synthese von Triphenylamin Monomeren (siehe 4.3.2)

Abbildung 3.17: Schematische Synthese von Triphenylamin-Monomeren zur Strukturierung

Abbildung 3.18: Der neu entwickelte Strukturierungsprozess im Schema

Das Verfahren wurde zuerst an 5 µm breiten Linienstrukturen getestet. Wie an der Elektronenmikroskopaufnahme in Abbildung 3.19 zu sehen ist, können so separierte Linien erhalten werden.

Auf dem Bild sind deutlich 600 nm Linien mit einem Abstand von etwa 200 nm zu erkennen.

Die Ausschnittsvergrößerung in Abbildung 3.21 verdeutlicht dabei den Sachverhalt zwischen Stempel und erhaltenener Struktur.
Ist bei dem Strukturierungsprozess die Viskosität etwas zu niedrig eingestellt, so ist ein Rückfluss zu beobachten. Dieser äußert sich in der abgerundeten Form der Linienstrukturen. Wie der Abbildung 3.22 außerdem zu entnehmen ist, verbleibt bei dem Prozess eine dünne Restschicht. Während diese Restschicht für die Verwendung der gestempelten Strukturen für Orientierungszwecke wünschenswert ist, ist sie bei der Verwendung für FET’s o.ä. hinderlich.

Um die halbleitenden Eigenschaften des Lochleiters nachzuweisen, wurde ein unstrukturierter Polymerfilm (Pp32), der auf einem ITO-Glasträger aufgebracht und anschließend mit Gold durch eine Lochmaske bedampft worden war, in einer Zwei-Punkt-Messzelle elektrisch vermessen. Die dabei erhaltene Strom-Spannungskennlinie, die in Abbildung 3.23 aufgeführt ist, zeigt dabei deutlich eine charakteristische Diodenkennlinie.
3.2 Strukturierung durch Stempeln

Abbildung 3.23: Diodenkennlinie einer Triphenylamin-Probe (Pp32) auf ITO

3.2.2 Strukturierung mit weichen Silikon-Stempeln (siehe 4.4.2)

Abbildung 3.24: Strukturierung mit weichen Silikon-Stempeln im Schema

Die dabei verwendeten Silikonstempel können einfach und kostengünstig durch Abgießen einer Form mit einem Silikonvorpolymerisat und anschließendem thermischen Polymerisieren hergestellt werden. Die dazu benötigte Form kann durch Elektronenstrahl lithographie und nachfolgendem Ätzen des Siliziums erhalten werden. Diese Masterherstellung ist zwar auf-
wendig und dementsprechend kostenintensiv, jedoch kann der so gewonnene Master immer wieder verwendet werden. Außerdem können nicht nur die Master erneut verwendet werden, sondern die Stempel selbst auch, da diese bei dem Strukturierungsprozess nicht zerstört werden. Während mit den käuflichen Silikonvorpolymerisaten Strukturen bis zu 100 nm erhalten werden können, ist es für kleinere Strukturen nötig, Stempel aus härteren Polymeren oder sogenannte Hybrid-Stempel mit einer harten Stempelrückseite zu verwenden[85].

Abbildung 3.25: Lichtmikroskopaufnahme einer Y-Struktur eines mit weichen Silikonstempeln strukturierten Triphenylamins (Monomer 32).

Linien zeigt, sind in Abbildung 3.27 Punktstrukturen zu erkennen, die nur noch wenige nm groß sind, so dass sie kaum noch mit dem Lichtmikroskop aufgelöst werden können.

Abbildung 3.26: Lichtmikroskopaufnahme von 400 nm Linien eines Triphenylamins (Monomer 32) die mit weichen Silikonstempeln strukturiert wurden

Abbildung 3.27: Sequenz von Lichtmikroskopaufnahmen von Punktstrukturen des strukturierten Triphenylamins (Monomer 32), welches bis auf wenige nm aufgelöst werden kann.

3.2.3 Anwendung der strukturierten Polytriphenylamine (siehe 4.4.2)

Abbildung 3.28: Lichtmikroskopaufnahme einer Triphenylamin-Schicht, die mit einem weichen PDMS-Stempel strukturiert wurde. Die dabei erhaltene Struktur ist eine 400 nm Linienstruktur. Der linke Teil der Aufnahme zeigt dabei die Struktur vor, die rechte die Struktur nach dem Aufschleudern des Polyfluorens, mit dem Polyfluoren oben auf.

Abbildung 3.29: Photolumineszenz-Spektrum eines auf strukturiertem Triphenylamin orientierten Polyfluorens
3.3 Strukturierung durch Licht induzierte Diffusion (siehe 4.5.2)

Voraussetzung für die Nutzung dieses Prinzips ist jedoch das Vorhandensein von zwei Monomeren, die ein unterschiedliches Verhalten bezüglich ihrer Copolymerisation zeigen.

Um die allgemeine Anwendbarkeit des Prinzips zu prüfen, wurden zwei Experimente geplant. In dem ersten Experiment sollte ein Monomer mit einem unreaktiven Polymer gemischt und dann dessen Verteilung nach der Photostrukturierung untersucht werden. Sollte dieses Experiment gelingen, so sind die bekannten Verbindungen aus Loch- und Elektronen-leitenden Materialien mit derartigen reaktiven Gruppen so zu funktionalisieren, dass sie ein unterschiedliches Verhalten bezüglich ihrer Copolymerisation aufweisen.

Zur Analyse der räumlichen Trennung der Monomere wurde die Spektroskopie mit modifiziertem Mikroskop verwendet, da über die Infrarotbanden oder Ramanbanden bei Monomeren mit unterschiedlichen reaktiven Gruppen auf die Konzentrationsverhältnisse geschlossen werden kann. Ramanmikroskope haben dabei gegenüber Infrarotmikroskopen den Vorteil, dass der Untersuchungslichtstrahl direkt zur Detektion verwendet werden kann.

3.3.1 Vorexperimente

Abbildung 3.30: Lichtmikroskopaufnahme einer unter einer Streifenmaske bestrahlten Mischung aus Monomer 32 und Polyethylenglykol 1000

Abbildung 3.31: Ramanmikroskopaufnahme einer unter einer Streifenmaske bestrahlten Mischung aus Monomer 32 und Polyethylenglykol 1000

3.3.2 Synthese von Verbindungen mit verschiedenen Copolymerisaionsparametern

Da das Vorexperiment erfolgreich war, war es erforderlich, Verbindungen aus Loch- und Elektronen-Leitern, die sich bezüglich ihrer Copolymerisation sehr stark unterscheiden, zu synthetisieren.

Gemäß Polymerhandbuch unterscheiden sich die Copolymerisationsparameter von Stryrol und seinen Derivaten sehr stark zu denen von Vinylestern. Daher schien es sinnvoll, da das
entsprechend vernetzbare Triphenylamin 32 schon vorhanden war, ein Vinylester modifiziertes Triazin zu synthetisieren. Vinylester lassen sich sehr einfach durch Austauschreaktion von Vinylacetat an Carbonsäuren unter Quecksilberacetat-Katalyse herstellen. Im Verlauf der Synthese zeigte sich jedoch, dass das entsprechende Carbonsäure modifizierte Triazin in Vinylacetat unlöslich ist. Daher wurde das Reaktionsprinzip entsprechend umgedreht.

Dazu wurde zunächst das vernetzbare Triazin 34, wie es Abbildung 3.32 zu sehen ist, synthetisiert. Die Reaktionsbedingungen waren dabei analog zu der bereits besprochenen Triazin-Synthese.

Abbildung 3.32: Syntheschema der für die Licht induzierte Strukturierung benötigten Monomere
3.3.3 Untersuchungen zur Licht induzierten Diffusion

Abbildung 3.33: Lichtmikroskopaufnahme einer unter einer Streifenmaske bestrahlten Mischung aus Monomer 34 und Monomer 36

Abbildung 3.34: AFM-Aufnahme einer unter einer Streifenmaske bestrahlten Mischung aus Monomer 34 und Monomer 36

Um die Probe daher genauer zu charakterisieren, wurde die Linienstruktur der Probe mit dem AFM untersucht (Abbildung 3.34). Wie an dem Schnitt quer durch die Probe, erkennbar an der blauen Linie, zu sehen ist, beträgt der Höhenunterschied bei einer Probe nur ungefähr 100 nm. Dies erklärt den relativ schwachen Kontrast im Lichtmikroskop. Insgesamt ist die Ober-
flächen der Probe jedoch sehr homogen, wie durch den Schnitt längs eines Grabens, erkennbar an der roten Linie, gut zu sehen ist.

Abbildung 3.35: Ramanspektren der Monomere: blau – Monomer 34; violett – Monomer 36

Abbildung 3.36: Ramanspektrum einer bestrahlten Probe von Monomer 34 und Monomer 36
Wie aus der Überlagerung der Wellenzahlen für die Monomere in Abbildung 3.35 geschlossen werden kann, ist die Wellenzahl 1415 cm\(^{-1}\) charakteristisch für das Monomer 34, und durch das Signal bei 1175 cm\(^{-1}\) kann eindeutig auf das Monomer 36 geschlossen werden. Hingegen ist das Signal bei 1610 cm\(^{-1}\) beiden Verbindungen gemeinsam.

Abbildung 3.37a zeigt die Probe bei dem Signal von 1610 cm\(^{-1}\). Deutlich ist die durch die Polymerisation hervorgegangene Linienstruktur zu erkennen. Abbildung 3.37b zeigt die Intensitätsverteilung des Signals bei 1415 cm\(^{-1}\), welches Monomer 34 entspricht. Deutlich ist eine Linienstruktur zu erkennen. Dies entspricht den Erwartungen, da davon ausgegangen wird, dass, wie im Fall der vernetzbaren Triphenylamins, das vernetzbare Triazin wesentlich schneller in die belichteten Bereiche diffundiert.

Schaut man sich jedoch das Verteilungsverhältnis zwischen den Seitengruppen an, wie es in Abbildung 3.37d gezeigt ist, so erkennt man eindeutig, dass das Ziel einer Licht-induzierten Monomerdiffusion erreicht wurde, weil wesentlich mehr Monomer 36 in den unbelichteten Bereichen verblieben ist als Monomer 34.
3.3 Strukturierung durch Licht induzierte Diffusion (siehe 4.5.2)

Abbildung 3.37a: Signal bei 1610 cm$^{-1}$ = Beitrag beider Verbindungen

Abbildung 3.37b: Signal bei 1415 cm$^{-1}$ = Monomer 34

Abbildung 3.37c: Signal bei 1175 cm$^{-1}$ = Monomer 36

Abbildung 3.37d: Division des Signal bei 1100-1300 cm$^{-1}$ durch das bei 1350-1550 cm$^{-1}$ Verhältnis Monomer 36 : Monomer 34
Im folgenden 4. Teil (Publikationen) sind die Publikationen aufgeführt, wie sie bei den angegebenen Zeitschriften erschienen sind bzw. eingereicht wurden. Zum leichteren Textverständnisses sind die Abbildungen und Tabellen nicht am Ende der jeweiligen Publikation angehängt, sondern in den Text eingebettet.
4 Publikationen
4.1 Taylored semiconducting polymers: Living radical polymerization and NLO-functionalisation of triphenylamines

M. Behl, E. Hattemer, M. Brehmer, R. Zentel*

*Macromolecular Chemistry and Physics, 2002, 203, 503-510

4.1.1 Zusammenfassung der Publikation

Weiterhin war es durch die Nutzung der lebend radikalischen Polymerisation möglich, Blockcopolymere aus Triphenylamin-Monomeren mit unterschiedlichen Seitenketten aufzubauen. Über eine polymeranaloge Umsetzung mit Tetracyanoethylen konnte einer dieser Triphenylamin-Blöcke selektiv in einen NLO-Block überführt werden. Dadurch war es möglich, Mikrophasen separierte Polymerstrukturen zu synthetisieren, in denen das lochleitende Polymer in der einen Phase und das photorefraktive Segment in der anderen Phase war.

Weiter wird die Synthese von NLO-Block Precursor-Monomeren beschrieben sowie deren Polymerisation und Blockcopolymerisation.

4.1.2 Publikation
Taylored semiconducting polymers:

Living radical polymerization and NLO-functionalisation of triphenylamines

Marc Behl, Erik Hattemer, Martin Brehmer, Rudolf Zentel*
Department of Chemistry, University of Mainz, Duesbergweg 10-14, Mainz, D-55099 Germany

Abstract

This paper describes the preparation of various polymers with triarylamine side groups. High molecular weight materials were obtained by free radical polymerization utilizing the gel effect. Polymers with a narrow polydispersity and a predetermined molecular weight could be prepared by living radical polymerization. The T_g could, thereby, be controlled between 50 and 140 °C either by using different monomers or by varying the molecular weight. Living radical polymerization allowed in addition the preparation of block-copolymers.

The triarylamine side groups could be transformed into NLO-chromophores by reaction with tetracyanoethylene. This leads to the incorporation of tri-cyanoethylene acceptor groups. As this reaction can be performed selectively on one block in block-copolymers, microphase separated structures are accessible, which possess charge transport moieties in one phase and NLO-chromophores in the other phase.
4.1 Taylored semiconducting polymers

Introduction

Semi-conducting polymeric materials find an steadily increasing interest.[1-3] Triphenylamine (TPA) derivatives are well known as good hole transport moieties in optoelectronic applications (LEDs).[4] In contrast to other conducting organic materials the charge transport of triphenylamines is relatively fast.[5] Further they build stable cations, which makes them less air sensitive than conjugated conducting materials like PPV. Therefore it is no wonder that in the last years a lot of research had been done in developing semi-conducting triphenylamine systems. Although triphenylamine containing polymers are more stable and viscous and therefore - in some cases - easier to handle and to process than their low molecular weight counterparts, the number of reported triphenylamine polymer systems is low.[6] Up to now two kinds of triphenylamine based polymers can be distinguished: main chain and side chain triphenylamine polymers.[7-10] While in main chain triphenylamine (TPA) polymers the concentration of the charge transport moiety is much higher than in side chain triphenylamine polymers, they are rather stiff and difficult to process because of the higher weight fraction of charge carriers. Both types of TPA containing polymers can usually only be prepared with modest molecular weights. High molecular weight triarylamine polymers were reported by Peyghambarian et al.[11] by ring-opening metathesis polymerization (ROMP) of TPA’s linked with norbornene. A disadvantage of this method is the high weight fraction of the norbonene backbone.

TPA’s are not only used as hole conducting material in LEDs, a further application is their use in photorefractive systems. In these systems the hole conducting material has to be combined with an non-linear optic (NLO) group in a high concentration. Unfortunately the high dipole momentum of the NLO-groups reduces the charge carrier mobility.[12] A possibility to solve this problem is to use a biphasic material, in which the material with the charge transporting properties and the material with the NLO-properties are microphase separated. Therefore block-copolymers with charge transport and NLO-moieties are required.
Here we report the synthesis and characterization of (i) high molecular weight poly(4-diphenyl-amino)styrene (PDAS) and its analogues by free radical polymerization, (ii) the controlled synthesis of PDAS and analogues macromers by living radical polymerization and (iii) block-copolymerization of PDAS and its analogues. Further we report the NLO-functionalization of PDPAS and its analogues by polymer analogous reaction. By this reactions tri-cyanovinyl groups can be added to the triarylamine side groups, transforming them into efficient NLO chromophores. As these copolymers combine charge transport moieties with NLO-chromophores in a nanophase separated structure, they are very promising as multi-functional photorefractive materials.

General Part

The synthesis of various monomers (16-21) was straight forward as shown in Scheme 1 to 3. The preparation sequence was an Ullmann coupling followed by a Vilsmeier formylation and finally a Wittig coupling.

![Scheme 1](image)

Preparation of the symmetrically substituted triphenylamines
4.1 Taylored semiconducting polymers

Scheme 2

Preparation of the unsymmetrically substituted triphenylamines

For the NLO-functionalization of the polymers we used two NLO-groups: the tri-cyanovinyl and the di-cyanovinyl group. The tri-cyanovinyl group is a stronger acceptor and leads to more effective NLO-systems. At the same time the absorbance of the NLO-chromophore gets strongly red shifted, which limits the use for photorefractive devices. NLO-chromophores with di-cyanovinyl groups absorb at shorter wavelengths. The tri-cyanovinyl group can be easily introduced by reaction of TPA polymers with tetracyanoethylene.
For NLO-functionalized polymers with a dicyanovinyl group this way is not possible. As the Knoevenagel-condensation of an aldehyde with malononitrile is an easy way to insert this group we decided to synthesize a polymerizable aldehyde (Scheme 3). In a variation of the double Vilsmeier-carbonylation of triphenylamine as described by Bu et al.[13] we prepared the Phenyl-dibenzoaldehyde 15. Starting from 10 we synthesized the 4-[Phenyl-(4-vinyl-phenyl)-aminobenzaldehyde (PVPABA) 20 with a single Wittig-reaction. As a byproduct we got the cross linker Phenyl-bis-(4-vinyl-phenyl)-amine 21, which showed excellent properties in photostructuring experiments.

With 20 we were able to make the NLO-functionalized polymer by living radical polymerization and polymer analogous Knoevenagel condensation of the resulting P20 with malononitrile.
Synthesis of the polymers

The monomers 16, 17, 18, 19 can be polymerized by free radical polymerization. However, when the polymerizations are performed under usual conditions with monomer concentrations of about 50 g/L, the molecular weights remain low. High molecular weights can be achieved by using a gel effect at high monomer concentrations. The results are listed in Table 1.

Table 1 Free radical polymerization of the monomers

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Concentration [g/L]</th>
<th>M_w [kg/mol]</th>
<th>M_n [kg/mol]</th>
<th>M_w/M_n</th>
<th>P_n</th>
<th>T_g [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P16a</td>
<td>50</td>
<td>8.5</td>
<td>17.0</td>
<td>2.0</td>
<td>31</td>
<td>126</td>
</tr>
<tr>
<td>P16b</td>
<td>330</td>
<td>26.2</td>
<td>93.3</td>
<td>3.6</td>
<td>97</td>
<td>136</td>
</tr>
<tr>
<td>P16c</td>
<td>500</td>
<td>99.0</td>
<td>426.0</td>
<td>4.3</td>
<td>367</td>
<td>137</td>
</tr>
<tr>
<td>P17a</td>
<td>200</td>
<td>64.5</td>
<td>251.5</td>
<td>3.9</td>
<td>215</td>
<td>143</td>
</tr>
<tr>
<td>P18a</td>
<td>232</td>
<td>55.6</td>
<td>43.7</td>
<td>1.3</td>
<td>114</td>
<td>78</td>
</tr>
<tr>
<td>P19a</td>
<td>230</td>
<td>42.0</td>
<td>31.0</td>
<td>1.4</td>
<td>108</td>
<td>127</td>
</tr>
</tbody>
</table>
Living radical polymerization and block-copolymerisation

In the next step we polymerized the monomers in a living radical polymerization process (see Scheme 4). As living radical source, the unimer 1-(1-phenylethoxy)-2,2,6,6-tetramethylpiperidine was used. The advantages of the unimer catalyzed route is the 1:1 stoechiometry of monomer radicals to termination molecules, so that no induction phase is necessary. The preparation of the unimer was done according to literature procedures.\cite{14} The results from these experiments are listed in Table 2. As to be expected the molecular weight distribution of the living radical polymerizations is much more narrow than in the free radical polymerization process. (monomers 16 to 19). In addition the \(P_n \)-value can be determined by
the unimer-monomer ratio (see especially P16). Tab. 2 also shows the limitations of this method. For high concentration of monomer and initiator (neat material) P18d termination becomes more prominent and both polydispersity and average molecular weight increase. The aldehyde containing monomer 20 – on the other hand – could not be polymerized in a controlled way. The resulting polydispersity is high with very low Pn-values. This can be explained either by a redox-process with the unimer or a deactivation of the vinyl group by the electron-withdrawing aldehyde group. Because of the smaller number of growing polymer species in the living radical polymerization compared to the free radical polymerization, the living radical polymerization takes much longer. For the preparation of block-copolymer up to 6 days were needed.

Table 2 Living radical polymerization of the monomers

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Concentration [g/L]</th>
<th>Unimer : Monomer</th>
<th>Mw [kg/mol]</th>
<th>Mn [kg/mol]</th>
<th>Mw/Mn</th>
<th>Pn</th>
<th>Tg [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P16d</td>
<td>200</td>
<td>1 : 10</td>
<td>2.7</td>
<td>2.4</td>
<td>1.11</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>P16e</td>
<td>200</td>
<td>1 : 50</td>
<td>13.7</td>
<td>12.0</td>
<td>1.18</td>
<td>44</td>
<td>136</td>
</tr>
<tr>
<td>P16f</td>
<td>200</td>
<td>1 : 100</td>
<td>27.1</td>
<td>24.6</td>
<td>1.32</td>
<td>91</td>
<td>136</td>
</tr>
<tr>
<td>P16g</td>
<td>200</td>
<td>1 : 200</td>
<td>54.2</td>
<td>44.8</td>
<td>1.67</td>
<td>165</td>
<td>137</td>
</tr>
<tr>
<td>P17b</td>
<td>200</td>
<td>1 : 100</td>
<td>30.1</td>
<td>27.1</td>
<td>1.27</td>
<td>90</td>
<td>143</td>
</tr>
<tr>
<td>P18b</td>
<td>152</td>
<td>1 : 100</td>
<td>38.3</td>
<td>34.1</td>
<td>1.12</td>
<td>89</td>
<td>52</td>
</tr>
<tr>
<td>P18c</td>
<td>448</td>
<td>1 : 100</td>
<td>48.0</td>
<td>43.5</td>
<td>1.10</td>
<td>113</td>
<td>64</td>
</tr>
<tr>
<td>P18d</td>
<td>296</td>
<td>1 : 100</td>
<td>52.1</td>
<td>46.5</td>
<td>1.12</td>
<td>121</td>
<td>78</td>
</tr>
<tr>
<td>P18e</td>
<td>-</td>
<td>1 : 100</td>
<td>95.7</td>
<td>68.4</td>
<td>1.40</td>
<td>178</td>
<td>80</td>
</tr>
<tr>
<td>P19b</td>
<td>225</td>
<td>1 : 100</td>
<td>26.6</td>
<td>22.6</td>
<td>1.14</td>
<td>79</td>
<td>123</td>
</tr>
<tr>
<td>P19c</td>
<td>335</td>
<td>1 : 100</td>
<td>28.1</td>
<td>27.1</td>
<td>1.04</td>
<td>94</td>
<td>101</td>
</tr>
<tr>
<td>P19d</td>
<td>220</td>
<td>1 : 100</td>
<td>33.9</td>
<td>30.9</td>
<td>1.10</td>
<td>107</td>
<td>133</td>
</tr>
<tr>
<td>P20a</td>
<td>112</td>
<td>1 : 100</td>
<td>20.0</td>
<td>10.5</td>
<td>1.90</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>P20b</td>
<td>68</td>
<td>1 : 100</td>
<td>10.3</td>
<td>7.1</td>
<td>1.46</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>P20c</td>
<td>30</td>
<td>1 : 100</td>
<td>43.6</td>
<td>16.0</td>
<td>2.73</td>
<td>53</td>
<td>129.9</td>
</tr>
<tr>
<td>P20d</td>
<td>81</td>
<td>1 : 100</td>
<td>10.8</td>
<td>8.6</td>
<td>1.26</td>
<td>29</td>
<td>132.7</td>
</tr>
<tr>
<td>P20e</td>
<td>18</td>
<td>1 : 100</td>
<td>15.8</td>
<td>13.4</td>
<td>1.18</td>
<td>45</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 1 shows the dependence of the glass transition temperature on the molecular weight for polymers P16 and P18. In this figure the results from the free radical polymerization are included. For polymer P16 the Tg is nearly constant starting with a degree of polymerization of...
40 monomer units. In case of the polymer P18 more than 110 monomer units are needed to reach the plateau value. From these results two ways to control the glass transition temperature are possible: either by varying the degree of polymerization or the length of the para alkyl substituents.

![Figure 1](image)

Dependence of the glass transition temperature T_g on the degree of polymerisation

One of the advantages of living radical polymerization is the possibility to build block-copolymers. To investigate this potential we prepared 3 block-copolymers. We polymerized monomer 17 on a block containing monomer 16 (Block 1) and vice versa, 16 on a block of monomer 17 (Block 2). Further we polymerized monomer 18 on a block of monomer 19 (Block 3). Figure 2 shows a GPC chromatogram as it was typically received. Because we can see no shoulders in the peaks of the GPC-chromatogram we conclude that the conversion of the homo-block to the diblock-copolymer is complete.
Figure 2

Overlay of the GPC-elution chromatograms of the homo-polymer P 19d and the block-copolymer block3 (RI refractive index and LS light scattering detector). The shift in the RI and LS signal happens, because the RI detector is placed behind the LS detector.

Table 3 Overview of the prepared block-copolymers

<table>
<thead>
<tr>
<th>Block-copolymer</th>
<th>n</th>
<th>m</th>
<th>(T_{g1}) [°C]</th>
<th>(T_{g2}) [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>block 1 (16-17)</td>
<td>90</td>
<td>83</td>
<td>116</td>
<td>-</td>
</tr>
<tr>
<td>block 2 (17-16)</td>
<td>91</td>
<td>75</td>
<td>121</td>
<td>-</td>
</tr>
<tr>
<td>block 3 (18-19)</td>
<td>107</td>
<td>50</td>
<td>122</td>
<td>53</td>
</tr>
</tbody>
</table>
DSC measurements (Table 3) of the block-copolymers allow a discussion of the phase separation. In block-copolymer block3 the T_g-values of both block-components are very different. Here clearly two T_g’s are detectable. This proves that the block-components of block3 are microphase separated. For the block-copolymers block1 and block2 the T_g-values of both constituents are very similar (Table 3). Here only one T_g is observed, which is lower than the T_g of both block-components. Therefore a proof of a microphase separation is not possible. The smaller T_g-value (compared to the homo-polymers) points, however, towards microphase separation. Such a decrease of T_g can occur because of the phase boundaries in block-copolymers with small dimensions. In our case the domain size, if phase separated, can be estimated to be only about 3-4 nm. This estimate is based on the coil dimension (radius of gyration) of polystyrene with the same elution volume in GPC measurements. In this context it is worth mentioning that all block-copolymers give optically clear films, even when they are definitely microphase separated (block3). As the domain size is only a few nm, light scattering is not significant, which makes these materials very interesting for optical applications.

NLO-functionalisation

A convenient way to convert triarylamines into efficient NLO-chromophores is the reaction with tetracyanoethylene (Scheme 5). The tricyano group introduced this way is an efficient acceptor group, which forms – in combination with tertiary amine groups – the NLO donator acceptor system. This reaction is – however – only possible, if the para position of the aromatic rings is not blocked with alkyl groups. Therefore P17 and P18 cannot be transformed into NLO-chromophores – as verified experimentally. This opens a way to functionalize selectively one block in block1-3 (see Scheme 5 and Tabs 3-4).
In contrast to the reaction of low molecular weight triphenylamine with tetracyanoethylene, the polymer analogous reaction of \(P_2 \) and \(P_{17} \) with tetracyanoethylene cannot be performed in DMF, as it does not dissolve the polymer sufficiently. Therefore a 1:5 mixture of DMF/Dioxane was used. Compared to the low molecular model reaction the reaction is slower in this solution. Therefore the reaction temperature was increased to 120 °C.
Result and progress of the conversion of the TPA polymer P16 into a polymer functionalized with NLO-chromophores, is shown in Figure 3 and 4. The UV spectra of the NLO-functionalized polymer and the low molar mass model compound (Figure 3) are almost identical.

![UV spectra comparison](image)

Figure 3

Comparison of the UV/VIS spectra of tri-cyanovinyl-substituted triphenylamine TPA-TCE and the di-cyanovinyl substituted TPA-DCE with the partial tri-cyanovinyl substituted, statistical copolymer P16-TCE and the partial di-cyanovinyl substituted P20-DCE. Spectra were measured in THF.

Only a slight bathochrome shift (3 nm) is observed for the polymer P16-TCE (520 nm). This can be explained by an additional inductive +I-effect of the alkyl-groups of the polyethylene backbone. The progress of the polymer analogous reaction can be monitored by UV/VIS spectroscopy.
Figure 4

Monitoring of the reaction kinetics of the polymer analogous reaction of P16 with tetracyanoethylene by UV/VIS spectroscopy

Figure 4 shows the time dependent absorption of the reaction solution at 520 nm. Up to a conversion of 20 %, where the reaction was stopped, a linear progress in reaction kinetics can be found. In principle higher substitution grades are possible (See P19). Differential calorimetry experiments of the functionalized polymer P16-TCE with 20 % chromophore showed an amorphous material with a glass transition temperature T_g of 147 °C. In contrast to the starting polymer the polymer analogous reaction rises the T_g by 10 °C. Thermogravimetic measurements show that the NLO-chromophore are stable up to 250 °C. During annealing experiments no change of the optical properties were observed after 5 hours at 150 °C.

For the block-copolymer block2-TCE functionalized selectively in one block with tricyanoethylene only one T_g is observed. Based on the similarity of the T_g-values of both block components (Table 3) this is as expected. A hint towards microphase separation result from the observation that block components (e.g. P16 and P16-TCE) do always phase separate. Therefore from the thermodynamic point of view both blend components are insoluble.
Table 4 Tri-cyanovinylation of the block-copolymers

<table>
<thead>
<tr>
<th>Block-copolymer</th>
<th>T_g [°C]</th>
<th>Built-in chromophore [mol%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 2-TCE</td>
<td>92</td>
<td>36</td>
</tr>
<tr>
<td>Block 3-TCE</td>
<td>58 and 84</td>
<td>29</td>
</tr>
</tbody>
</table>

The polymers functionalized with tricyanoethylene groups possess an absorption which is strongly red shifted. Therefore photorefractive measurements have to be done at wavelengths of about 800 nm or higher. Such systems are available and the polymers can be sensitized with e.g. (2,4,7-trinitro-9-fluorenylidene)malonitrile (TNFM). To operate at such wavelengths it would, however, be much easier to work with simple He/Ne lasers. Dicyanoethylene substituted TPA’s offer this possibility. They require, however, a different chemistry (see Scheme 3).

![Scheme 6](image)

In a first experiment, polymer P20 was reacted with malononitrile in pyridine (Scheme 6). UV-measurements (see Figure 4) show the formation of the NLO-chromophores with di-
4.1 Taylored semiconducting polymers

cyanoethylene acceptor groups. A conversion of 74 mol % of the aldehyde groups can be achieved without extensive optimization. The NLO-functionlized polymers P20-DCE show an absorption at 435 nm, the low molecular model compound at 434 nm.

Experimental Part

Materials

All reagents were used without further purification. 4-(diphenylamino)benzaldehyde, aniline, iodotoluene, ditoluylamine, iodobenzene, 4-n-butyliodobenzene, methyltriphenylphosponium bromide and tetracyanoethylene were purchased from Aldrich Chemical Co. Diphenylamine, phosphorus oxychloride, diethylene glycol dimethylether (diglyme, purum) and DMF (purum, over molecular sieve) were purchased from Fluka. Dioxane and THF were purchased from SDS. 2,2'-azobis(2-methylpropionitrile) (AIBN) was recrystalized from diethylether. THF was dried over calcium hydride under nitrogen atmosphere. Dioxane was dried over sodium under nitrogen atmosphere.

Instrumentation

Gel permeation chromatography (GPC) at RT was used to determine the molecular weight. For this purpose a combination of a Jasco PU-980 pump, PSS standard columns (pore size 10^3 Å and 10^4 Å), Jasco RI-detector, Jasco UV-975 detector and a Viscotek T60A dual detector (viscosity and lightscattering) was used. To evaluate the data universal calibration based on polystyrene standards was used. Differential scanning calorimetry was performed on a Perkin Elmer DSC 7 with 10K/min scanning rate. UV/VIS spectroscopy was performed on a Shimadzu UV-2102 PC.
Synthesis

General procedure for the Ullmann-coupling (7, 8, 9)

101 mmol of the Diamine (e.g. 20 g Ditoluylamine), 100 mmol (1.3 g) potassiumcarbonate, 23.7 mmol (1.5 g) copper-powder and 0.5 mmol (0.3 g) Copperiodine were suspended in 101 mmol (11.34 ml, 20.7 g) Iodobenzene and refluxed at 200 °C for 24 h under exclusion of moisture. Excess of solvent had been sucked off under vacuum and the residue was purified by column chromatography (silica gel, chloroform). Yield: e.g. 22.92 g (83%) colorless crystals of 7.

7:

1H-NMR (THF-d$_8$):
δ: 7.2-6.8 (m, 12H); 2.26 (s, 6H)

8:

1H-NMR (CDCl$_3$):
δ: 7.19 (t, 2H); 7.03 (m, 10H); 6.92 (t, 1H); 2.55 (t, 4H); 1.58 (qui, 4H); 1.36 (h, 4H); 0.92 (t, 6H)

13C-NMR (CDCl$_3$):
δ: 148.3; 145.6; 137.4; 129.1; 129.0; 124.3; 123.1; 121.7; 35.0; 33.7; 22.4; 14.0

9:

1H-NMR (CDCl$_3$):
δ: 7.29 – 7.24 (m, 4H); 7.13 – 7.05 (m, 6H); 7.05 – 6.96 (m, 4H); 2.34 (s, 3H)

13C-NMR (CDCl$_3$):
δ: 148.1; 145.3; 132.7; 129.9; 129.1; 124.9; 123.6; 122.2; 20.8

General procedure for the Vilsmeyer-formylation (12-14)

55 mmol of the aldehyde (e.g. 15.0 g of 7) were dissolved in 120 ml dry DMF and 55 mmol (8.4 g) of Phosphorusoxychloride were added through a dropping funnel carefully, keeping
the reaction temperature below 25 °C. The reaction was done under exclusion of moisture. After the complete addition of the POCl₃ the reaction solution has a red color and was stirred for 5 h at 60 °C. Then the mixture was poured on 10 g of ice and 30 ml of water were added. The solution was neutralized with a sodiumhydroxide solution and the formed precipitate was filtered off, dried and purified by column chromatography (silica gel, petro-ether:dichloromethane 1:1).

Yield: e.g. 13.25 g (80 %) of 12

12:

¹H-NMR (CDCl₃):
δ: 9.75 (s, 1H); 7.62 (d, 2H); 7.16 (d, 4H); 7.08 (d, 4H); 6.65 (d, 2H); 2.33 (s, 6H)

¹³C-NMR (CDCl₃):
δ: 190.3; 153.7; 143.5; 135.0; 131.3; 130.4; 128.5; 126.4; 118.2; 20.9

13:

¹H-NMR (CDCl₃):
δ: 9.76 (s, 1H); 7.60 (d, 2H); 7.14 (d, 4H); 7.07 (d, 4H); 6.94 (d, 2H); 2.60 (t, 4H); 1.61 (qui, 4H); 1.38 (h, 4H); 0.95 (t, 6H)

¹³C-NMR (CDCl₃):
δ: 190.0; 153.6; 143.5; 139.9; 131.2; 129.5; 128.4; 126.2; 118.2; 35.0; 33.4; 22.3; 13.8

14:

¹H-NMR (CDCl₃):
δ: 9.78 (s, 1H); 7.64 (d, 2H); 7.31 (t, 2H); 7.18 – 7.10 (m, 5H); 7.05 (d, 2H); 6.96 (d, 2H); 2.34 (s, 3H)

¹³C-NMR (CDCl₃):
δ: 190.3; 153.5; 146.2; 143.5; 135.2; 131.3; 130.4; 129.6; 128.8; 126.6; 126.1; 124.9; 118.8; 20.9

General procedure for the Wittig-reaction (16-19)

To a solution of 17 mmol (6.1 g) of methyltriphenosphoniumbromide in 20 ml THF 17 mmol (2.1 g) potassium-tert-butylate were added under cooling, whereby the solution changes to an yellow color. The reaction solution was stirred for further 30 minutes and then 15 mmol of the
aldehyde (e.g. 4.6 g of diphenylamiobenzaldehyde) were added. The reaction was stirred for 5 h at RT, whereby the color changed to yellow. The monomers 16-18 were purified by column chromatography with petrol ether as eluent.

Yield: e.g. 3.29 g (87 %) colorless, slowly crystallizing needles of 16

16:

1H-NMR:
δ: 7.33 – 6.93 (m, 14 H); 6.65 (dd, 1H); 5.63 (d, 1H); 5.09 (d, 1H)

13C-NMR (THF-d$_8$):
δ: 149.0; 148.9; 137.6; 133.4; 130.3; 128.2; 125.5; 124.7; 124.0; 112.4

17:

1H-NMR (THF-d$_8$):
δ: 7.24 (d, 2H); 7.04 (d, 4H); 6.92 (m, 6H); 6.62 (dd, 1H); 5.59 (d, 1H); 5.05 (d, 1H); 2.27 (s, 6H)

13C-NMR (THF-d$_8$):
δ: 149.3; 146.6; 137.7; 133.6; 132.5; 130.9; 128.0; 125.8; 123.5; 111.8; 21.1

18:

1H-NMR (THF-d$_8$):
δ: 7.21 (d, 2H); 7.04 (d, 4H); 9.64 (m, 6H); 6.62 (dd, 1H); 5.58 (d, 1H); 5.05 (d, 1H); 2.56 (t, 4H); 1.60 (qui, 4H); 1.38 (h, 4H); 0.94 (t, 6H)

13C-NMR (THF-d$_8$):
δ: 149.2; 146.7; 138.6; 137.7; 132.5; 130.2; 128.0; 125.7; 123.7; 111.9; 36.2; 35.0; 23.6; 14.7

19:

1H-NMR (THF-d$_8$):
δ: 7.24 (t, 2H); 7.18 (t, 2H); 7.04 (d, 4H); 7.02 (d, 4H); 6.96 (t, 3H); 6.63 (dd, 1H); 5.61 (d, 1H); 5.07 (d, 1H); 2.27 (s, 3H)

13C-NMR (THF-d$_8$):
δ: 149.2; 149.0; 146.4; 137.7; 134.0; 133.0; 131.0; 130.2; 128.1; 126.2; 125.0; 124.1; 123.6; 112.4; 21.2
Preparation of **15**

In a 250 mL three necked flask with reflux cooler, dropping funnel and dry tube, 43.0 mmol (10.55 g) of triphenylamine were dissolved in 50 mL (47.4 g, 684.4 mmol) N,N-dimethylformamide. Under ice cooling 42 mL (70.35 g, 458.8 mmol) of phosphoroxychloride were carefully added during one hour. After that the solution was heated for 5.5 h at 95 °C. After cooling down, the reaction was quenched by careful addition of ice. With 5 N sodium-hydroxide solution the reaction solution was neutralized, whereby a brown solid precipitated. The solid was suction filtered over a fritte and dried in a vakuumoven at room temperature. The dry solid was purified by a column chromatography over a silica gel column (diameter: 8cm) with a petroleum ether : acetic acid ester 3 : 1 solution. Detection was made by TLC. Product containing fractions were combined, solvent evaporated at the rotovap and dried in high vaccua.

Yield: 8.35 g (64 %)

R_f (petrolether : acetic acid ester 3: 1) = 0.55

1H-NMR (CDCl$_3$)

δ: 9.86 (s, 2H); 7.76 (d, 4H); 7.40 (t, 2H); 7.26 (t, 1H); 7.16 (d, 4H); 7.16 (d, 2H)

13C-NMR (CDCl$_3$):

δ: 190.4; 151.6; 145.5; 131.3; 131.2; 130.1; 127.0; 126.2; 122.7

Preparation of **20**

The apperature consisted of a three necked round bottom flask with reflux cooler and dropping funnel. 15.34 mmol (5.48 g) of methyltriphenylphosphoniumbromide were suspended in 100 ml THF in the dropping funnel. Under cooling 15.68 mmol (1.76 g) of potassium-tert-butylate were added. 5.11 mmol (1.54 g) of **19** were dissolved in 50 ml THF and the reaction mixture in the dropping funnel was added within 90 minutes. The solution was stirred over night, concentrated at the rotovap and purified by column chromatography over a silica-gel column with petroleter as eluent. Detection was made by TLC. Product containing fractions
were combined and concentrated at the rotovap. The phenyl-bis-(4-vinyl-phenyl)-amine was isolated as a waxy white solid.

Yield 1.47 g (97%)

1H-NMR (THF-d$_8$):
δ: 9.78 (s, 1H); 7.67 (d, 2H); 7.40 (d, 2H); 7.33 (t, 2H); 7.16 (d, 2H); 7.15 (d, 1H); 7.11 (d, 2H); 7.03 (d, 2H); 6.70 (dd, 1H); 5.72 (d, 1H); 5.18 (d, 1H)

13C-NMR (THF-d$_8$):
δ: 190.2; 154.1; 147.6; 147.3; 137.4; 135.6; 131.9; 131.4; 130.9; 128.6; 127.4; 127.0; 126.1; 121.1; 113.9

Free radical polymerization

The polymerization of the triphenylamine monomers had been carried out in THF at 50 °C. To remove the stabilizer the THF was freshly distilled. AIBN in a 2 mol% concentration, referring to monomer concentration, was used as radical starter. The monomer concentration and the results can be seen from Table 1. The polymerization time was 15 h. The polymers were precipitated from cold acetone and reprecipitated from THF/acetone.

Living radical polymerization

The procedures for the homo- and blockcopolymerization are the same and differ only in the polymerization time. In both cases the monomer and unimer or macromere are solved in dry, freshly distilled diglyme and polymerized in a schlenk flask at 120 °C under exclusion of oxygen. The concentration of monomer/macromere was 0.2g/100ml. Used unimer and monomer/monomer relations can be taken from Table 2. Homopolymers were polymerized for 22 h, in contrast, the blockpolymers took 6 d. The polymers were precipitated from acetone and reprecipitated from THF/acetone. **P20** was precipitated from diethylether and reprecipitated from THF/diethylether. Except **P20** all polymers are colorless solids, in case of **P18** and its block-copolymers glassy solids.
Polymer analogous reaction of **P20**

In a 100 ml round bottomed flask 53.8 mg of **P20** were combined with 37.1 (0.56 mmol) malodinitrile. 1.1 g 4Å molsieves, 5 ml pyridine, 5 drops of acetic acid and one crystal of ammoniumacetate were added. The reaction was stirred over night at RT and then solvent freed by high vacuum. The residue was taken into 10 mL dichloromethane and filtered. The filtrate was washed three times with 5 mL water and dried over sodiumsulfate. The organic phase was concentrated at the roto-vap, precipitated from diethylether and repricipitated from THF/diethylether.

Polymer analogous reaction of PDAS

0.5 g (1.84 mmol) **P16** and 2.36 g (18.4 mmol) tetracyanoethylene were dissolved in 50 ml dry dioxane and 10 ml dry THF. The reaction mixture is refluxed at 120 °C under nitrogen atmosphere. Developing hydrogen cyanide was allowed to leave the apparature through a bubble gauge on top of the condenser via a slow nitrogen stream. After 15 h 20 mol% of the triphenylamine groups have been reacted. The PDAS-TCE copolymer can be precipitated in petrol ether. Polar impurities are removed by adding acetone to the precipitation solution. Reprecipitation from THF/petrol ether and acetone.

Acknowledgement

We want to acknowledge the VW-foundation for financial support of this project.
4.1 Taylored semiconducting polymers

Literature

4.2 Blockcopolymers build up of electron and hole transport materials

M. Behl, R. Zentel*

Macromolecular Chemistry and Physics, 2004, eingereicht

4.2.1 Zusammenfassung der Publikation

4.2 Blockcopolymers build up of electron and hole transport materials

4.2.2 Publikation

Blockcopolymers build-up of electron and hole transport materials

Marc Behl, Rudolf Zentel*

Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55099 Mainz
zentel@mail.uni-mainz.de

Abstract

In this article we describe the synthesis of various monomers modified with triphenyl-1,3,5-triazine side groups as electron transport moieties. By nitroxide mediated polymerization (NMP) with a TEMPO unimer it was possible to obtain polymers with a narrow polydispersity. Furthermore the living radical polymerization allowed it to obtain blockcopolymers from these monomers. Therefore microphase separated structures are accessible which possess hole conducting moieties in one phase and electron conducting moieties in the other phase.

Introduction

In the last years much progress has been achieved in organic semiconducting materials for electronic applications like LED’s or FET’s [1, 2, 3]. These materials could either be low molecular weight compounds, which have to be vacuum sublimed or polymer blends and polymers. While for the low molecular weight compounds the charge carrier mobility is slightly higher than for polymers, polymers have the advantage of a much easier processing, for example by spincoating.

In both cases, single molecules or polymers, these materials are predominantly hole-transport (p-conductor) materials, into which it is much easier to inject holes than electrons. Examples of some of the rare electron conductors are oxadiazoles, triazoles, triazines and C\textsubscript{60}-fullerenes.

From all these materials the C\textsubscript{60}-fullerenes are the class with the highest electron conducting potential, but their synthesis is difficult, their solubility is low and to convert them into monomers is even more difficult. Oxadiazoles have a much lower conductivity, their synthesis is easy, but their solubility is very poor. The same is true for triazoles for which the con-
ductivity is a little bit lower. Concerning the electron conducting potential, triazines are equal to the triazoles, but their solubility is higher. Last but not least, polymers containing aromatic triazines are known to be very thermostable.

Polymeric triphenyltriazines have been prepared by Thelakat et al. as triazine ethers by condensation reaction [4]. These polymeric triazines accomplish the expectations as electron conductors, but because of the polycondensation their degree of polymerization is low and the degree of distribution is broad.

Therefore we consider it advantageous to polymerize triazines by a radical polymerization technique. The advantage is a much higher molecular weight, and if living radical polymerization [5] is possible, a much more narrow molecular weight distribution can be achieved.

As in OLED’s the same amount of holes and electrons have to be transported, there is a principle interest in the combination of hole and electron conductors. During our work, Se Young Oh et al. [6] could show, that a copolymer consisting of randomly polymerized triphenylamine and triazine moieties, could improve the intensity of OLED’s. We assume that structures with separated hole and electron conducting moieties must be even more efficient.

Such nanophase separated structures are – generally – accessible through the synthesis of blockcopolymers with blocks consisting of hole or electron transporting monomers. Scherf et al. have made blockcopolymer (polyfluorene / polyaniline) by a polycondensation technique [7], in which the distribution of blocklengths is difficult to control. Controlled radical polymerization, which has already been successfully applied for the synthesis of blockcopolymers with hole transport moieties [8], seems to be a promising route to well defined blockcopolymers.

Here we describe the synthesis of nine triazine monomers as electron transport moieties, their successful polymerization by controlled radical techniques and finally the preparation of blockcopolymers with triphenylamine monomers as hole transport moieties.

General Part

Synthesis of the monomers

Considering electron deficient triazine monomers, which can possibly be polymerized by a controlled radical mechanism, styrene derivates look promising. They should be modified in two directions. Alkyl substituents – on one hand – should improve the solubility, electron withdrawing groups should make the first reduction potential less negative. Generally the pre-
condition for the synthesis of the monomers is the synthesis of mono substituted triazines. While the synthesis of symmetrical triphenyltriazines (with three times the same residue) is somehow easy, and done just by trimerization of the appropriate nitriles, either under basic [9] or acidic [10] conditions, the synthesis of the asymmetric triphenyltriazines is more difficult.

![Scheme I: Synthesis of the triazines via the nitrile route](image)

The key-step of our route is the triazine formation from a carboxylic acid and nitriles, in which the triazine formations happens via a nitrile group exchange catalyzed by aluminum chloride (see Scheme I).

The building of the desired monosubstituted triphenyltriazine can thereby be controlled by an excess of the nitrile. Nevertheless the yields are often below 60%.

Many of the nitriles used for the triphenyltriazine formation are commercially available. If not they were prepared by transforming the carboxylic acid into the acid chloride and afterwards into the carboxylic amide. This amide was transformed into the nitrile through reaction with thionyl chloride (Scheme I).
For the TEMPO mediated living radical polymerization the monomers have to be styrene like, therefore the triazines have to be functionalized with a vinyl group. Several ways for this reaction are possible but not many of them work well with the triazine core. As the triazine ring is electron poor, a Vilsmeier reaction followed by Wittig reaction is useless. Better results are obtained by lithiation of a triazine arylbromide or -iodide followed by reaction with DMF and subsequent Wittig reaction. The best results can be achieved by palladium catalyzed reaction of the triazinearyliode with vinylmagnesiumbromide (Scheme II).

The second task beneath the introduction of alkyl groups (solubility) was the variation of the redox behavior. For this reason electron withdrawing or donating groups were linked to the triazine ring (monomers 7 - 9). As electron withdrawing group especially –CF₃ groups are interesting. They are so strongly electron withdrawing that they can transform a typical hole transport material like an oligothiophene into an electron transport material [11]. Unfortunately the triazine formation of scheme I did not work with nitrils with a meta CF₃ substituent. Therefore the CF₃ substituted traizines were prepared as described in scheme III in analogy to [4].

p-Brom-benzaldehyde was condensed with aniline to the Schiff base. This Schiff base was reacted with the amidine. The amidine was prepared by conversion of the nitrile to the imidoester and the subsequent reaction with ammonium chloride. Finally the Schiff base and the amidine were condensed in DMF. This triphenyltriazine 18 was then reacted with vinylmagnesiumbromide under palladium catalysis as described in scheme II to give monomer 9.
4.2 Blockcopolymers build up of electron and hole transport materials

Scheme III: Synthesis of meta CF₃ substituted triazines

The monomers 1 – 9 are compiled in scheme IV. They are characterized by 1H-NMR and 13C-NMR. The 13C-NMR spectrum of monomer 4 is shown in Fig. 1 as an example. Note that the carbon in the triazine ring, which is connected to the styrene fragment can be distinguished from the two other carbon atoms (Fig. 1).

Scheme IV: Overview of the synthesized tiazines
4.2 Blockcopolymers build up of electron and hole transport materials

Fig. 1: 13C-NMR, CDCl$_3$ of monomer 4

CV from monomer 5 at 20 mV/s; (potential 0- -2.0V)

CV from FRP5 at 20 mV/s; (potential 0- -2.0V)

Fig. 2: CV measurements for monomer 5 (left side) and polymer FRP5 (right side). Polymer P5 was measured as a thin film spin coated onto the electrode
To show the electron transport potential of the triazines we have investigated their oxidation and reduction potentials by cyclic voltametry with ferrocene as an internal standard. As a typical example the results for monomer 5 are presented in Fig. 2. Two reduction potentials can be seen, one E_1 at -1.60 V and the other E_2 at -1.76 V. During reoxidation $E_{1\text{back}}$ can only be seen as a shoulder at roughly -1.53 V while $E_{2\text{back}}$ is at -1.62 V. If the scan speed is varied between 20 and 100 mV/sec no major change occurs. The E_2 and $E_{2\text{back}}$ potentials are typical for triazines and in congruence with the literature [12]. In oxidative direction no activities could be observed up to 2.00 V.

Polymers

Free radical polymerization

As a first test of the reactivity of the monomers, free radical polymerizations have been done with some monomers (AIBN as initiator, THF as solvent). As they proved to be successful, also copolymers with the hole transport monomers 10 - 12 (scheme IV) were made. The results are compiled in Tab. 1. For most systems high molecular weight could be achieved. For polymer FRP1 the molecular weight is lower since it precipitates during polymerization.

![Scheme V: used triphenylamines](image)

<table>
<thead>
<tr>
<th>R</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>10</td>
</tr>
<tr>
<td>CH₃</td>
<td>11</td>
</tr>
<tr>
<td>(CH₂)₃CH₃</td>
<td>12</td>
</tr>
</tbody>
</table>
Tab. 1: free radical polymerization (FRP) of triazine monomers. FRCP represents statistical copolymers of triazin monomers and the triphenylamine monomers 10 or 11

<table>
<thead>
<tr>
<th>polymer</th>
<th>monomer</th>
<th>$T_g \text{ a)}$ $[^\circ C]$</th>
<th>$M_w \text{ b)}$ [g/mol]</th>
<th>$M_n \text{ b)}$ [g/mol]</th>
<th>PD b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRP1</td>
<td>1</td>
<td>235.0</td>
<td>53180</td>
<td>23790</td>
<td>2.24</td>
</tr>
<tr>
<td>FRP5</td>
<td>5</td>
<td>-</td>
<td>477500</td>
<td>233900</td>
<td>2.04</td>
</tr>
<tr>
<td>FRP6</td>
<td>6</td>
<td>-</td>
<td>467700</td>
<td>226800</td>
<td>2.06</td>
</tr>
<tr>
<td>FRP7</td>
<td>7</td>
<td>-</td>
<td>c)</td>
<td>c)</td>
<td>c)</td>
</tr>
<tr>
<td>FRP8</td>
<td>8</td>
<td>218.3</td>
<td>d)</td>
<td>d)</td>
<td>d)</td>
</tr>
<tr>
<td>FRCP1/10</td>
<td>1 / 10 e)</td>
<td>193.3</td>
<td>242200</td>
<td>99140</td>
<td>2.44</td>
</tr>
<tr>
<td>FRCP7/11</td>
<td>7 / 11 e)</td>
<td>-</td>
<td>113100</td>
<td>58780</td>
<td>1.92</td>
</tr>
</tbody>
</table>

a) determined by DSC-measurements, heating rate 10 K / min, Tg: Extrapolated Half Cp
b) GPC in THF
c) Insoluble in THF, soluble in CHCl₃
d) Insoluble in THF and CHCl₃
e) Ratio of monomers 1 :1

To investigate the influence of the polymerization on the redox properties, cyclovoltammetric measurements were done on the polymers too. They were done on thin films spin coated onto the electrodes. A result is presented in Fig. 2 for polymer FRP5. Here again two reversible reduction peaks can be seen. One as a shoulder at –1.63 V and the other pronounced at -1.81 V. At reoxidation, both peaks are falling together into one peak at -1.62 V. As for the monomers no change can be seen by acceleration of the scan speed. During a scan into the oxidative regime (0 – 2 V) no oxidation was detected.

Controlled radical polymerization

As the next step, controlled radical polymerization was tried with the TEMPO-unimer as initiator (see scheme VI). Different solvents were used to optimize the solubility and the polydispersity of the resulting polymers. The best results were obtained in diethyleneglycoldimethylether (diglyme). They are presented in Tab. 2. Polymerization in xylene and in naphthalene resulted in a broader polydispersity.
Scheme VI: Living radical polymerization of triphenyltriazines.

Tab. 2: TEMPO mediated polymerization (LRP) of triazines (polymerization 24 h at 125 °C in diglyme, 0.2 g monomer/ml).

<table>
<thead>
<tr>
<th>polymer</th>
<th>monomer</th>
<th>initiator: monomer 1:</th>
<th>initiator: converted monomer 1:</th>
<th>(T_g) (^{a)}) [°C]</th>
<th>(M_n) theoret. [g/mol]</th>
<th>(M_w) (^{b)}) [g/mol]</th>
<th>(M_n) (^{b)}) [g/mol]</th>
<th>PD (^{b)})</th>
<th>(P_n)</th>
<th>IE (^{c)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRP1</td>
<td>1</td>
<td>99</td>
<td>45</td>
<td>246.7</td>
<td>14957</td>
<td>35850</td>
<td>22730</td>
<td>1.58</td>
<td>68</td>
<td>0.66</td>
</tr>
<tr>
<td>LRP2</td>
<td>2</td>
<td>199</td>
<td>111</td>
<td>225.3</td>
<td>40250</td>
<td>89880</td>
<td>40130</td>
<td>2.24</td>
<td>110</td>
<td>1.00</td>
</tr>
<tr>
<td>LRP3</td>
<td>3</td>
<td>200</td>
<td>162</td>
<td>-</td>
<td>63242</td>
<td>105000</td>
<td>65930</td>
<td>1.59</td>
<td>168</td>
<td>0.96</td>
</tr>
<tr>
<td>LRP4</td>
<td>4</td>
<td>198</td>
<td>65</td>
<td>247.3</td>
<td>27352</td>
<td>45090</td>
<td>38130</td>
<td>1.18</td>
<td>91</td>
<td>0.72</td>
</tr>
<tr>
<td>LRP5a</td>
<td>5</td>
<td>100</td>
<td>20</td>
<td>218.0</td>
<td>8983</td>
<td>35410</td>
<td>26100</td>
<td>1.36</td>
<td>58</td>
<td>0.34</td>
</tr>
<tr>
<td>LRP5b</td>
<td>5</td>
<td>198</td>
<td>58</td>
<td>-</td>
<td>26141</td>
<td>123000</td>
<td>86880</td>
<td>1.42</td>
<td>194</td>
<td>0.30</td>
</tr>
<tr>
<td>LRP5c</td>
<td>5</td>
<td>237</td>
<td>37</td>
<td>219.7</td>
<td>16431</td>
<td>101200</td>
<td>87810</td>
<td>1.15</td>
<td>196</td>
<td>0.19</td>
</tr>
<tr>
<td>LRP6a(^{d)})</td>
<td>6</td>
<td>156</td>
<td>121</td>
<td>217.6</td>
<td>67705</td>
<td>298700</td>
<td>82080</td>
<td>3.64</td>
<td>147</td>
<td>0.82</td>
</tr>
<tr>
<td>LRP6b</td>
<td>6</td>
<td>199</td>
<td>169</td>
<td>-</td>
<td>94553</td>
<td>77360</td>
<td>34560</td>
<td>2.24</td>
<td>62</td>
<td>2.74</td>
</tr>
<tr>
<td>LRP7a</td>
<td>7</td>
<td>98</td>
<td>57</td>
<td>220.3</td>
<td>22519</td>
<td>38470</td>
<td>24790</td>
<td>1.55</td>
<td>63</td>
<td>0.91</td>
</tr>
<tr>
<td>LRP7b</td>
<td>7</td>
<td>195</td>
<td>135</td>
<td>-</td>
<td>53563</td>
<td>77290</td>
<td>54370</td>
<td>1.42</td>
<td>137</td>
<td>0.99</td>
</tr>
<tr>
<td>LRP8a</td>
<td>8</td>
<td>100</td>
<td>36</td>
<td>-</td>
<td>12478</td>
<td>35020</td>
<td>22040</td>
<td>1.59</td>
<td>63</td>
<td>0.57</td>
</tr>
<tr>
<td>LRP9a</td>
<td>9</td>
<td>99</td>
<td>-</td>
<td>223.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{a)}\) determined by DSC-measurements, heating rate 10 K / min, \(T_g \): Extrapolated Half Cp
\(^{b)}\) GPC in THF
\(^{c)}\) IE initiator efficiency
\(^{d)}\) polymerization in the neat monomer without solvent

As a result, it is possible to obtain from most monomers (not 2 and 6) high molecular mass polymers with a relatively narrow polydispersity (PD). The polymers prepared from monomer 2 (LRP2) precipitates from solution. This is presumably the reason for the broader polydisper-
sity. For **LRP9** the results cannot be quantified due to the limited solubility, which makes the GPC measurements impossible. Monomer 6 melts at 40 °C, therefore the TEMPO mediated polymerization in neat was also performed (**LRP6a**) together with polymerization in solution. Very high molecular weights could be achieved, however the PD is very high and the polymerization not controlled.

The degree of polymerization can be controlled for monomers 1, 3, 4 and 7, for which the initiation efficiency is higher than 0.7. Monomer 5 is an exception. It can be polymerized with the used initiator system into polymers with a rather low polydispersity, but the initiator efficiency is below 50 %.

A possible reason for this might be the purification step (precipitation) used to determine the conversion. Since **LRP5** precipitates in very fine form, the conversion (the yield) might be underestimated leading to a – too low – initiator efficiency.

With regard to the solid state properties of the triazine monomers **LRP1 – LRP9** it is interesting that they are amorphous materials with rather high T_g-values, which are mostly above 200 °C.

Blockcopolymers

Encouraged by these results we tried to make blockcopolymers from the hole transport monomers 10 – 12 (Scheme IV), prepared according to reference [8] and the electron transport materials 4, 5 and 7 (Scheme V) according to scheme VII. As a first step various end functionalized triphenylamine blocks were prepared in analogy to reference [8]. Their characterization is compiled in Tab. 3. Generally their polydispersity is rather low and the initiator efficiency acceptable. The TEMPO mediated polymerization of the triphenylamines is better controlled than for the triarylamines (compare to Tab. 2). After precipitation in acetone and proper characterization they were used as initiators for the polymerization of various triazine monomers (lower part of scheme VII). The resulting blockcopolymers are compiled in Tab. 4.

As an example of the characterization the GPC traces of the first triphenylamine block and the final blockcopolymer are presented in Fig. 3 for two examples. The black trace shows the blockcopolymerization where as the black dotted trace shows the homo-block.
4.2 Blockcopolymers build up of electron and hole transport materials

Scheme VII: living radical block copolymerization of triphenylamines and triphenyltriazines.

Tab. 3: Living radical polymerization of triphenylamines to prepare the initiator block

<table>
<thead>
<tr>
<th>polymer</th>
<th>monomer</th>
<th>initiator: monomer 1:</th>
<th>initiator: converted monomer 1:</th>
<th>T_g a) [°C]</th>
<th>M_n theoretical [g/mol]</th>
<th>M_w b) [g/mol]</th>
<th>M_n b) [g/mol]</th>
<th>PD b)</th>
<th>P_n</th>
<th>IE c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRP10a</td>
<td>10</td>
<td>97</td>
<td>56</td>
<td>-</td>
<td>15223</td>
<td>22530</td>
<td>16770</td>
<td>1.34</td>
<td>62</td>
<td>0.91</td>
</tr>
<tr>
<td>LRP10b</td>
<td>10</td>
<td>97</td>
<td>67</td>
<td>142.0</td>
<td>18272</td>
<td>22300</td>
<td>18300</td>
<td>1.22</td>
<td>67</td>
<td>1.00</td>
</tr>
<tr>
<td>LRP10c</td>
<td>10</td>
<td>96</td>
<td>59</td>
<td>141.9</td>
<td>15940</td>
<td>22620</td>
<td>18190</td>
<td>1.24</td>
<td>67</td>
<td>0.88</td>
</tr>
<tr>
<td>LRP10d</td>
<td>10</td>
<td>203</td>
<td>127</td>
<td>149.3</td>
<td>34372</td>
<td>38730</td>
<td>28210</td>
<td>1.37</td>
<td>104</td>
<td>1.22</td>
</tr>
<tr>
<td>LRP11a</td>
<td>11</td>
<td>97</td>
<td>36</td>
<td>-</td>
<td>10830</td>
<td>18080</td>
<td>16080</td>
<td>1.12</td>
<td>54</td>
<td>0.67</td>
</tr>
<tr>
<td>LRP11b</td>
<td>11</td>
<td>100</td>
<td>48</td>
<td>139.2</td>
<td>14367</td>
<td>23710</td>
<td>20370</td>
<td>1.16</td>
<td>68</td>
<td>0.71</td>
</tr>
<tr>
<td>LRP12a</td>
<td>12</td>
<td>99</td>
<td>39</td>
<td>-</td>
<td>15031</td>
<td>24650</td>
<td>20710</td>
<td>1.19</td>
<td>54</td>
<td>0.73</td>
</tr>
</tbody>
</table>

a) determined by DSC-measurements, heating rate 10 K / min, T_g: Extrapolated Half Cp
b) GPC in THF
c) IE initiator efficiency
4.2 Blockcopolymers build up of electron and hole transport materials

Tab. 4: Living radical block copolymerization of triphenyltriazines with the initiator block from Tab. 3

<table>
<thead>
<tr>
<th>blockcopolymer</th>
<th>pre-polymer</th>
<th>monomer</th>
<th>Pre-polymer : monomer 1:</th>
<th>Pre-polymer : converted monomer 1:</th>
<th>Tg a) [°C]</th>
<th>Mn theo. [g/mol]</th>
<th>Mw b) [g/mol]</th>
<th>Mn b) [g/mol]</th>
<th>PD b)</th>
<th>Pn</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRCP10a-5</td>
<td>LRP10a</td>
<td>5</td>
<td>100</td>
<td>52</td>
<td>-</td>
<td>39836</td>
<td>148200</td>
<td>105000</td>
<td>1.41</td>
<td>197</td>
</tr>
<tr>
<td>LRCP10b-5</td>
<td>LRP10b</td>
<td>5</td>
<td>128</td>
<td>32</td>
<td>150.4 / 222.0</td>
<td>32438</td>
<td>109300</td>
<td>86990</td>
<td>1.26</td>
<td>153</td>
</tr>
<tr>
<td>LRP10d-4</td>
<td>LRP10d</td>
<td>4</td>
<td>202</td>
<td>142</td>
<td>146.9 / 239.8</td>
<td>87906</td>
<td>97280</td>
<td>52510</td>
<td>1.85</td>
<td>58</td>
</tr>
<tr>
<td>LRCP12a-5</td>
<td>LRP12a</td>
<td>5</td>
<td>100</td>
<td>28</td>
<td>85.0 / 206.0</td>
<td>33253</td>
<td>86650</td>
<td>72110</td>
<td>1.20</td>
<td>115</td>
</tr>
<tr>
<td>LRCP10b-7</td>
<td>LRP10b</td>
<td>7</td>
<td>107</td>
<td>66</td>
<td>140.3 / 215.8</td>
<td>44216</td>
<td>88040</td>
<td>73330</td>
<td>1.20</td>
<td>139</td>
</tr>
<tr>
<td>LRCP11a-5</td>
<td>LRP11b</td>
<td>5</td>
<td>101</td>
<td>25</td>
<td>-</td>
<td>27323</td>
<td>82480</td>
<td>63830</td>
<td>1.29</td>
<td>107</td>
</tr>
<tr>
<td>LRCP11a-7</td>
<td>LRP11b</td>
<td>7</td>
<td>118</td>
<td>86</td>
<td>-</td>
<td>50208</td>
<td>89360</td>
<td>75530</td>
<td>1.18</td>
<td>150</td>
</tr>
</tbody>
</table>

a) determined by DSC-measurements, heating rate 10 K / min, Tg: Extrapolated Half Cp
b) GPC in THF
Fig. 3: Typical GPC chromatogram from living radical polymerization of triphenylamine and block copolymerization of triphenyltriazine. a) homoblock LRP10b and copolymer with monomer 5. In this case the efficiency for blockcopolymerisation is not 100%
b) homoblock LRP10d and Blockcopolymer with monomer 4
In all cases the molecular weight rises strongly after reinitiating the second monomer (block-copolymerization). For LRPC11b-5 it raises e.g. from 17390 to 82480 [g/mol]. Therefore we conclude that the blockcopolymerization succeeded. This is reasonable as only monomers for which the TEMPO mediated polymerization was successful were selected and the initiator block resembles the unimer chemically.

The initiation of the second block is most of the time not 100 % complete, as there remains often a small residue of the prepolymer used. This corresponds to an initiator efficiency smaller than 1 (see Tab. 2). The amount of remaining homopolymer (prepolymer) is – however – always smaller than 20 %.

In the DSC measurements of the blockcopolymers two glass transition temperatures can be observed as expected for microphase separated blockcopolymers (Tab. 4). One is in the temperature range of the triazine homo polymers (Tab. 1 and 2) and one in the temperature range of the homo triphenylamines (Tab. 3). For statistical copolymers – prepared here - an average glass transition temperature can be observed (Tab. 1, FRCP). We can rule out the possibility that the measured glass transition for the triphenylamine moiety arises from the small fraction of triphenylamine homopolymer left in sample, as both steps in the DSC curve have about the same magnitude. Therefore we assume that the blocks in the blockcopolymers are really microphase separated.

At the same time the microphase separated structure is small. We have not yet made TEM measurements, but an estimate of the block size is possible according to GPC measurements. The individual blocks of the blockcopolymers have eluation volumes (and thus) dimensions like polystyrene of molecular weights between 20,000 and 80,000. According to polymer handbook [13], the radius of gyration of styrene with a molecular weight of 20,000 [g/mol] can be estimated roughly to be 10 nm, of styrene with a molecular weight of 85,000 [g/mol] it is roughly 20 nm. These domain sizes are much below the size where the light is scattered. A simple experiment to proof this behavior is a film of the blockcopolymer on a transparent substrate. Fig. 4 shows a film from the blockcopolymer spincoated on a glass. As can be seen from the picture, this film remains clear and transparent. This means, that the domain size from the blocks is below the range of the visible light, as no light scattering happens. These blockcopolymers are therefore optically transparent materials with a microphase separated structure in the 10 nm range consisting of electron- and hole-transporting materials. Such materials can be interesting – after doping with an absorbing species – for organic photovoltaics.
4.2 Blockcopolymers build up of electron and hole transport materials

Fig. 4: spincoated film of a triphenylamine/triazine blockcopolymer with a scratch in the middle

Tab. 5: cyclic voltametric peaks of compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reductive direction [V]</th>
<th>Oxidative direction [V]</th>
<th>Reductive direction [V]</th>
<th>Oxidative direction [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRP5</td>
<td>-1.746</td>
<td>-1.547</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LRP6</td>
<td>-1.696</td>
<td>-1.397</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LRP7</td>
<td>-1.846</td>
<td>-1.746</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LRP8</td>
<td>-1.796</td>
<td>-1.397</td>
<td>+0.998</td>
<td>+1.198</td>
</tr>
<tr>
<td>LRP9</td>
<td>-1.497</td>
<td>-1.347</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LRP11</td>
<td>-</td>
<td>-</td>
<td>+0.549</td>
<td>+1.198</td>
</tr>
<tr>
<td>LRCP11b-5</td>
<td>-1.946</td>
<td>-1.447</td>
<td>+0.748</td>
<td>+1.048</td>
</tr>
<tr>
<td>LRCP11b-7</td>
<td>-1.896</td>
<td>-1.647</td>
<td>+0.599</td>
<td>+1.148</td>
</tr>
<tr>
<td>LRP11-4</td>
<td>-1.896 (shoulder)</td>
<td>-1.447</td>
<td>+0.599</td>
<td>+1.198</td>
</tr>
<tr>
<td>LRP10d-4</td>
<td>-1.896</td>
<td>-1.497</td>
<td>+0.748</td>
<td>+1.148</td>
</tr>
</tbody>
</table>

To test the accessibility of both blocks in thin polymers films (e.g. in the solid state), CV measurements were made on thin films spincoated on a glassy carbon disk electrode [14]. Due to the fact that these measurements have been performed on another cyclic voltametric setup, they can not be directly compared to the measurements of Fig. 2. In this setup the peaks are shifted due to a different ferrocene half-potential. The data obtained for homo- and blockco-
polymers are compiled in Tab. 5. The reduction potentials of the triazines correspond to the data of the monomers (see Fig. 2). They change in agreement with the electronic effects of the substituents. Due to the strong +I effect of the tert-butyl groups the potentials for LRP5 are shifted in the negative direction compared to LRP6. Because of the strong +M effect of the methoxy groups, this shift is even more pronounced in LRP7. A small shift to negative potentials compared to LRP6 can even been observed for LRP8. A reason could be the slight +M effect of the thiophene ring. Surprisingly even the hole conducting properties of the thiophene rings can even be observed in the positive potential. As expected it can be seen, that the CF₃ groups shift the potential clearly to higher reduction and oxidation potentials. Therefore LRP9 is expectedly the best electron conductor of the shown polymers.

![Cyclic voltamograms of the blockcopolymer LRP10d-4. Left side negative potential, right side positive potential](image)

In case of the triphenylamines the CV measurements are reversible, if the para positions are blocked. If they are unsubstituted the moieties dimerize in the oxidized state and the CV measurements gets irreversible in agreement with reference [8]. CV measurements of the blockcopolymers films (solid state) show both the reduction of the electron transport moiety and the oxidation of the hole transport moiety at nearly unchanged potential compared to the homopolymers (see Fig. 5). This is again a hint towards the nanophase separated structure. Only the difference between the oxidation and reduction sweeps (or reduction / re-oxidation) differs slightly from the homopolymers. Most importantly is however that both blocks are accessible from the surface of thin films.
Experimental part

Instrumentation

Gel permeation chromatography (GPC) at RT was used to determine the molecular weight. For this purpose a combination of a Jasco PU-980 pump, a pre-column and three columns from Mainz Analysentechnik (8 mm x 300 mm, pore size $10^2/10^4/10^6 \text{ Å}$) filled with a copolymer of styrene and divinylbenzene, Jasco RI-1530 detector, Jasco UV-1575 detector and a Wyatt-Technology miniDawn TRIstar lightscattering detector was used. For each measurement 100 µl solution of the polymer solved in THF (2 mg/ml) were injected. Molecular weights were calculated on the basis of the light scattering signal with the Software Viskothek TriSEC.

Differential scanning calorimetry was performed on a Perkin Elmer DSC 7 with 10 K/min scanning rate.

Synthesis of the monomers

Preparation of the triphenyltriazine halogenide

In a 100 ml round flask 30 mmol of the benzoylchloride, 90 mmol of the nitrile, 30 mmol of aluminumchloride and 120 mmol of ammoniumchloride were added and heated to 150 °C. After heating overnight, the reaction was quenched by adding ice and concentrated hydrochloric acid. The residue was filtered off and washed with diluted hydrochloric acid and water. Afterwards the residue was recrystallized from acetic acid.

compound 13

1H-NMR:

δ (CDCl$_3$): 8.73 (m, 4H); 8.61 (m, 2H); 7.68 (m, 2H); 7.57 (m, 6H)

compound 14

1H-NMR:

δ (CDCl$_3$): 8.62 (d, 4H); 8.42 (d, 2H); 7.90 (d, 2H); 7.32 (d, 4H); 2.46 (s, 6H)

compound 15

1H-NMR:

δ (CDCl$_3$): 8.63 (d, 4H); 8.46 (d, 2H); 7.89 (d, 2H); 7.37 (d, 4H); 2.78 (q, 4H); 1.29 (t, 6H)
4.2 Blockcopolymers build up of electron and hole transport materials

compound 16
1H-NMR:
δ (CDCl$_3$): 8.64 (d, 4H); 8.46 (d, 2H); 7.90 (d, 2H); 7.41 (d, 4H); 3.02 (quin, 2H); 1.31 (d, 12H)

compound 17
1H-NMR:
δ (CDCl$_3$): 8.64 (d, 4H); 8.46 (d, 2H); 7.90 (d, 2H); 7.58 (d, 4H); 1.38 (d, 18H)
13C-NMR:
δ (CDCl$_3$): 171.59; 170.77; 156.15; 137.82; 136.05; 133.45; 130.41; 128.79; 125.60; 99.78; 35.08; 31.22

compound 18
1H-NMR:
δ (CDCl$_3$): 8.62 (d, 4H); 8.44 (d, 2H); 7.88 (d, 2H); 7.35 (d, 4H); 2.70 (t, 4H); 1.68 (quin, 4H); 1.27 (m, 20H); 0.85 (t, 6H)

compound 19
1H-NMR:
δ (CDCl$_3$): 8.68 (d, 4H); 8.43 (d, 2H); 7.88 (d, 2H); 7.04 (d, 4H); 3.91 (s, 6H)

compound 20
1H-NMR:
δ (CDCl$_3$): 8.35 (m, 2H); 8.29 (m, 2H); 7.88 (m, 2H); 7.62 (m, 2H); 7.21 (m, 2H)
13C-NMR:
δ (CDCl$_3$): 170.71; 167.89; 141.57; 137.82; 135.13; 132.38; 131.71; 130.35; 128.45; 100.21

Vinylation of the triazine halogenides
A 250 ml Schlenk flask was filled with 3 mmol of the triazine-bromide or –iodide and 2 mol-
% of Palladiumferrocenedichloromethane complex and was then oxygen freed. 50 ml of THF
was added under Schlenk conditions and then cooled to $–70 \, ^\circ \text{C}$. Then 9 ml of a 1 Mol / l Vi-
nylmagnesiumbromide solution in THF was added drop wise.
The reaction was stirred overnight whereby it warmed up to room temperature and was then
quenched by adding 15 ml of a saturated ammonium chloride solution. Afterwards the reac-
tion mixture was extracted three times with 150 ml chloroform totally and concentrated under
reduced pressure. Finally the product was cleaned by column chromatography with petro-
lether chloroform mixtures as eluent.
4.2 Block copolymers build up of electron and hole transport materials

Monomers:

monomer 1
\(^1\)H-NMR:
\[\delta (\text{CDCl}_3): 8.75 \text{ (m, 6H)}; 7.59 \text{ (m, 8H)}; 7.10 \text{ (dd, 1H, J=11.7 Hz; 17.6 Hz)}; 5.92 \text{ (d, 1H, 17.6 Hz)}; 5.39 \text{ (d, 1H, 11.7 Hz)} \]
\(^{13}\)C-NMR:
\[\delta (\text{CDCl}_3): 171.48; 171.16; 141.49; 136.37; 136.24; 135.55; 132.39; 129.18; 128.91; 128.55; 126.38; 115.83 \]

monomer 2
\(^1\)H-NMR:
\[\delta (\text{CDCl}_3): 8.71 \text{ (d, 2H)}; 8.64 \text{ (d, 4H)}; 7.58 \text{ (d, 2H)}; 7.35 \text{ (d, 4H)}; 6.82 \text{ (dd, 1H, J=11.2 Hz; 17.6 Hz)}; 5.91 \text{ (d, 1H, 17.6 Hz)}; 5.38 \text{ (d, 1H, 11.2 Hz)}; 2.46 \text{ (s, 6H)} \]
\(^{13}\)C-NMR:
\[\delta (\text{CDCl}_3): 171.43; 171.01; 142.91; 141.36; 136.44; 135.83; 133.67; 129.33; 129.16; 128.91; 126.35; 115.72; 21.71 \]

monomer 3
\(^1\)H-NMR:
\[\delta (\text{CDCl}_3): 8.71 \text{ (d, 2H)}; 8.64 \text{ (d, 4H)}; 7.58 \text{ (d, 2H)}; 7.38 \text{ (d, 4H)}; 6.82 \text{ (dd, 1H, J=11.0 Hz; 17.6 Hz)}; 5.91 \text{ (d, 1H, 17.6 Hz)}; 5.38 \text{ (d, 1H, 11.0 Hz)}; 2.76 \text{ (q, 4H)}; 1.30 \text{ (t, 6H)} \]
\(^{13}\)C-NMR:
\[\delta (\text{CDCl}_3): 171.41; 170.95; 149.11; 141.31; 136.44; 135.83; 133.91; 129.13; 129.01; 128.09; 126.33; ; 29.00; 15.34 \]

monomer 4
\(^1\)H-NMR:
\[\delta (\text{CDCl}_3): 8.71 \text{ (d, 2H)}; 8.66 \text{ (d, 4H)}; 7.58 \text{ (d, 2H)}; 7.41 \text{ (d, 4H)}; 6.82 \text{ (dd, 1H, J=11.4 Hz; 17.7 Hz)}; 5.90 \text{ (d, 1H, 17.7 Hz)}; 5.38 \text{ (d, 1H, 11.4 Hz)}; 3.02 \text{ (quin, 2H)}; 1.32 \text{ (d, 12H)} \]
\(^{13}\)C-NMR:
\[\delta (\text{CDCl}_3): 171.49; 171.01; 153.73; 141.36; 136.44; 135.86; 134.09; 129.15; 129.06; 126.69; 126.36; 115.70; 34.29; 23.80 \]
4.2 Blockcopolymers build up of electron and hole transport materials

monomer 5

1H-NMR:
δ (CDCl$_3$): 8.71 (d, 2H); 8.66 (d, 4H); 7.57 (d, 6H); 6.82 (dd, 1H, J=10.7 Hz; 17.7 Hz) 5.90 (d, 1H, 17.6 Hz); 5.38 (d, 1H, 10.7 Hz); 1.39 (s, 18H)

13C-NMR:
δ (CDCl$_3$): 171.54; 171.49; 155.96; 141.38; 136.45; 135.87; 133.69; 129.17; 128.79; 126.37; 125.58; 115.73; 35.08; 31.23

monomer 6

1H-NMR:
δ (CDCl$_3$): 8.71 (d, 2H); 8.65 (d, 4H); 7.58 (d, 2H); 7.35 (d, 4H); 6.82 (dd, 1H, J=10.7 Hz; 18.5 Hz) 5.90 (d, 1H, 18.5 Hz); 5.38 (d, 1H, 10.7 Hz); 2.71 (t, 4H); 1.67 (quin, 2H); 1.26 (m, 20H); 0.86 (t, 6H)

13C-NMR:
δ (CDCl$_3$): 171.56; 171.04; 147.97; 141.38; 136.46; 135.87; 133.91; 129.18; 128.96; 128.72; 126.38; 115.75; 36.11; 31.88; 31.28; 29.49; 29.32; 29.28; 22.68; 14.09

monomer 7

1H-NMR:
δ (CDCl$_3$): 8.70 (m, 4H); 8.69 (m, 2H); 7.57 (d, 2H); 7.04 (m, 4H); 6.81 (dd, 1H, J=10.7 Hz; 17.6 Hz); 5.90 (d, 1H, J=17.6 Hz); 5.38 (d, 1H, J=10.7 Hz); 3.90 (s, 6H)

13C-NMR:
δ (CDCl$_3$): 170.74; 170.62; 163.10; 141.15; 136.46; 135.93; 130.69; 129.03; 128.94; 126.26; 115.57; 113.78; 55.34

monomer 8

1H-NMR:
δ (CDCl$_3$): 8.61 (m, 2H); 8.31 (m, 2H); 7.62 (m, 2H); 7.56 (m, 2H); 7.21 (m, 2H); 6.81 (dd, 1H, J=10.7 Hz; 17.7 Hz); 5.90 (d, 1H, J= 17.7 Hz); 5.38 (d, 1H, J=10.7 Hz)

13C-NMR:
δ (CDCl$_3$): 170.95; 167.80; 141.61; 136.38; 134.93; 132.13; 131.50; 129.16; 128.89; 128.37; 126.35; 115.88
monomer 9

1H-NMR:

$\delta \ (CDCl_3): 8.99 \ (s, 2H); 8.95 \ (d, 2H); 8.72 \ (d, 2H); 7.87 \ (d, 2H); 7.72 \ (t, 2H); 7.62 \ (d, 2H); 6.84 \ (dd, 2H, J=11.2 \ Hz; 17.5 \ Hz) \ 5.94 \ (d, 2H, 17.5 \ Hz); 5.42 \ (d, 1H, 11.2 \ Hz)$

Preparation of the nitriles

The preparation of nitriles was performed according to the organic handbook: the carboxylic acid chlorides were prepared from the carboxylic acids with thionyl chloride, these carboxylic acid chlorides were then transformed into the primary amides by pouring into ammonia solution and from these amides the nitriles were yielded through reaction with thionyl chloride again.

Preparation of the carboxylic acid chlorides

50 mmol of carboxylic acid and 250 mmol thionylchloride were stirred in a 100 ml round flask overnight at room temperature under a nitrogen atmosphere after one drop of DMF was added. The excess of thionylchloride was distilled at reduced pressure. The remaining acid chlorides were not further characterized and used as received.

Preparation of the carboxylic amides

In 1 l three necked round flask with KPG stirrer and dropping funnel, the carboxylic acid chloride were dropped carefully into a mixture of concentrated ammonia and ice. After subsequent stirring the solid was filtered of.

$R = \text{CH(CH}_3\text{)}_2$

1H-NMR:

$\delta \ (CDCl_3): 7.73 \ (d, 2H); 7.29 \ (d, 2H); 5.90 \ (s, 2H); 2.95 \ (\text{quin, 1H}); 1.25 \ (s, 6H)$

$R = \text{C(CH}_3\text{)}_3$

1H-NMR:

$\delta \ (\text{DMSO}): 7.90 \ (s, 1H); 7.80 \ (d, 2H); 7.43 \ (d, 2H); 7.26 \ (t, 1H) \ 1.28 \ (s, 9H)$
4.2 Blockcopolymers build up of electron and hole transport materials

\[R = (CH_2)_7CH_3 \]

\[^1H-NMR: \delta (CDCl_3): 7.71 (d, 2H); 7.24 (d, 2H); 6.07 (s, 2H); 2.63 (t, 2H); 1.59 (quin, 2H); 1.26 (m, 10H); 0.85 (t, 3H) \]

Preparation of the nitriles

In a 250 ml round flask 13.5 mmol of the amide was suspended in 125 ml of benzene and 147 mmol (10.7 ml) of thionylchloride was added. After the decay of the vehement reaction at the beginning, the reaction mixture was boiled under reflux until the HCl development stopped. The excess of thionylchloride and the benzene was distilled off, afterwards the nitrile was distilled under reduced pressure.

\[R = CH(CH_3)_2 \]

\[\delta (CDCl_3): 7.56 (d, 2H); 7.30 (d, 2H); 2.94 (quin, 1H); 1.24 (s, 6H) \]

\[R = C(CH_3)_3 \]

\[\delta (DMSO): 7.57 (d, 2H); 7.46 (d, 2H); 1.31 (s, 9H) \]

\[R = (CH_2)_7CH_3 \]

\[\delta (CDCl_3): 7.54 (d, 2H); 7.25 (d, 2H); 2.64 (t, 2H); 1.55 (quin, 2H); 1.25 (m, 10H); 0.86 (t, 3H) \]

Synthesis of 21

compound 22

In a dry 100 ml round flask 10.42 g (60.89 mmol) \(\alpha,\alpha,\alpha \)-triflouro-m-tolunitrile were dissolved in 50 ml dry methanol. In a dry 10 ml round flask 0.30 g sodium were given to 5 ml dry methanol. After the reaction was done, the solution was overcanulated into the 100 ml round flask. This reaction mixture was stirred for 3 h then 3.50 g (65.43 mmol) of ammoniumchloride were added. After stirring overnight, the precipitated compound 22 was filtered off. Yield: 5.60 g (41%)

\[^1H-NMR: \delta (DMSO): 9.58 (s, 4H); 8.22 (s, 1H); 8.13 (m, 2H); 7.85 (t, 1H) \]
compound 23
15.0 g (81.07 mmol) of the p-bromobenzaldehyde and 7.55 g (81.07) mmol of aniline were
weighted in a 500 ml round flask and 250 ml chloroform were added. The reaction was re-
fluxed in Dean-Stark apparatus for 6 hours after a drop of sulfuric acid was added. The reac-
tion was then solvent freed. The yield was quantitative and the product not further purified.
1H-NMR:
δ (DMSO): 8.39 (s, 4H); 7.76 (d, 2H); 7.59 (d, 2H); 7.38 (m, 2H); 7.22 (m, 4H)

synthesis of 21
In a 100 round flask 5.01 g (19.25 mmol) of 23 and 8.62 g (38.50 mmol) of 22 were weighted
in and dissolved in 50 ml DMF. The reaction mixture was stirred 24 h at 80 °C. The DMF
was removed at reduced pressure. Afterwards the residue was recrystallized from acetic acid.
Yield: 1.45 g (32 %)
1H-NMR:
δ (CDCl$_3$): 8.93 (s, 2H); 8.88 (d, 2H); 8.57 (d, 2H); 7.56 (d, 2H); 7.70 (m, 4H)

Polymerization

Free Radical Polymerization
The polymerization of the triphenyltriazine monomers had been carried out in THF at 50°C.
To remove the stabilizer the THF was freshly distilled. AIBN in a 2 mol-% concentration,
referring to monomer concentration, was used as radical starter. For all free radical polymeri-
izations 0.2 g monomer each was used, the concentration was 0.2 g/mL. The polymerization
time was 12 hours. The polymers were precipitated from cold acetone and reprecipitated from
THF/acetone.

Living Radical Polymerization
The procedures for the homo and block copolymerization are the same and differ only in the
polymerization time. In both cases the monomer and unimer or macromer are solved in dry,
freshly distilled diglyme and polymerized in a 10 mL Schlenk flask at 125°C under exclusion
of oxygen. The concentration of monomer/macromer was 0.2 g/1 ml. Used unimer and
monomer/macromer relations can be taken from Tab. 2 and 3. Homopolymers were polymer-
ized for 24 h; in contrast, the second monomer for the blockcopolymers was polymerized 7
days. Polymers and blockcopolymers were precipitated from acetone and reprecipitated from
THF/acetone. The converted monomer was calculated based on the weight of the polymer. Due to the fact that some polymers do not fully precipitate this method bears a mistake. The M_n theoretical has been calculated as the product of the initiator : converted monomer ratio and the molecular weight of the monomer. The initiator efficiency is given by the ratio of the M_n theoretical and by the GPC measured M_n.

CV measurements
The voltamograms were obtained with an Autolab P30 potentiostat, controlled by a Standard PC. A three electrode configuration in an undivided cell was used, consisting out of a platinum mesh as counter electrode, a glassy carbon working disc electrode (28 mm diameter) and a reference electrode. The reference electrode was an Ag/AgCl (LiCl /EtOH) electrode from Metrohm (6.0724.140). All measurements were performed in acetonitrile using 0.1 M tetrabutylammonium tetrafluoroborate (TBABF$_4$) as conducting salt. The electrochemical cell was calibrated against a ferrocene standard. For this setup, the ferrocene half-potential could be estimated to be 499 mV against Ag/AgCl (LiCl/EtOH). The cell was deoxigenated with Argon prior each measurement. 1-% solution of the polymers in chloroform were prepared and 25 µl of the solution were deposited on the electrode. The electrodes were kept under vacuum and dried at 40 °C for 1h.

Acknowledgement
We want to thank Dr. S. Janietz and the Fraunhofer Institute Golm for the advice and some cyclic voltametric measurements.
References

4.3 Towards plastic electronics: New Process of patterning polymers by Nanoimprint Lithography

M. Behl, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, R. Zentel*

*Advanced Materials, 2002, 14, 588

4.3.1 Zusammenfassung der Publikation

4.3.2 Publikation

Towards plastics electronics:

New Process of patterning semiconducting polymers by Nanoimprint Lithography

Marc Behla, Jörg Seekampb, Sergiy Zankovychb, Clivia M. Sotomayor Torresb, Rudolf Zentel*a

a M. Behl, Prof. Dr. R. Zentel
University of Mainz, Institute of Organic Chemistry,
Duesbergweg 10-14, 55099 Mainz, Germany

b Dr. J. Seekamp, S. Zankovych, Prof. Dr. C. M. Sotomayor Torres
University of Wuppertal, Institute of Material Sciences, Department of Electrical Engineering,
Gaußstraße 20, 42097 Wuppertal, Germany
Abstract:

A new process and specially designed reactive monomers allow the printing of 200 nm lines of semiconducting polymers at room temperature by nanoimprint lithography. The material shows the typical semiconducting properties.

Organic semiconducting materials have gained a lot of interest in recent years [1,2], which is witnessed by the Nobel prize 2000 [3]. Their main applications are seen in the field of light emitting diodes (organic LEDs) [4] and plastics electronics [5]. Both applications require a patterning of the material. This is done for LEDs by inkjet printing, for plastics electronics by photolithography. This limits resolution to the µm range (ink jet) or the wavelength of light. Very generally, patterning is the essential step in the processing of semiconductors, both inorganic or organic. It is usually done with the help of photoresists, but this method will soon reach its limits as the sizes of the components get smaller than the wavelength of light. E-beam resists are one possibility to solve this problem, but their processing is very time consuming, because they are written line by line. Therefore stamping techniques (Nanoimprint Lithography, NIL), which allow the transfer of complete patterns with a resolution of 10 nm and lower [6] in one step, are finding more and more interest. [7,8] Afterwards the height profile embossed into the “resist” has to be transferred into the underlying semiconductor by plasma etching. The direct patterning of a semiconducting polymer by stamping would therefore facilitate the process strongly.

At present a disadvantage of the nanoimprint lithography is the temperature cycling. The resist (mostly PMMA based) has to be heated above Tg (for PMMA based resists about 160 °C), imprinted and must be cooled down again, before the stamp can be removed. This problem is overcome through the Step and Imprint Lithography (SFIL) [8], by using photocurable monomers, which are polymerised during the imprint process. A disadvantage of this procedure is, however, the need for transparent quartz stamps.
We have developed a new processing scheme, which allows the direct patterning of functional semiconducting polymers in the 100 nm range without the need for temperature cycling or irradiation (transparent stamps) during the processing period. In addition it is not the resist material, which is patterned, but the semiconducting organic material itself. This eliminates the need for further processing steps (plasma treatment) to pattern the underlying semiconducting material. This offers new routes to electronic circuits by printing techniques.

Scheme 1
Schematic diagram of the imprinting process

The process we developed is simple, as can be seen on scheme 1. A monomer photoinitiator solution is spincoated on a silicon-substrate and then shortly photocured by exposure to UV light. Upon this UV-flashing radicals are formed from the photoinitiator. This leads to a partial conversion of the double bonds and an increase of the resulting viscosity. Depending on the monomer and the film-thickness we used flashing times from 5 to 20 seconds. The con-
version of the double bonds and the resulting viscosity increase has to be high enough, that sticking between the oligomer and the stamp is neglectable, but is has to be low enough, that a pattern transfer is still possible. We determined this “processing window” so far in test rows. For optimal results, the viscosity should also be set to a point, where the “backflow” of the material after removing of the stamp is slow. After the UV-flashing the oligomers are imprinted at room temperature and after removal of the stamp the imprinted form is permanently fixed by subsequent photocuring.

As monomers we used triphenylamine analogues, because of their good hole transport properties. They were modified with one (diphenyl-(4-vinyl-phenyl)-amine, 1) or two vinyl (phenyl-bis-(4-vinyl-phenyl)-amine, 2) groups. They are synthesised according to Scheme 2. Concerning the imprinting Scheme 1 these monomers differ. Monomer 1 with only one vinyl group forms linear polymers. It allows a greater time span for UV-flashing, because the increasing of molecular weight with conversion is not as steep as for monomer 2 with the two vinyl groups. Monomer 2 is a crosslinkable monomer. Its viscosity increases steeply during conversion of the vinyl groups as the gelpoint is approached. This limits the processing win-
dow (irradiation time). On the other hand, monomer 2 forms a highly crosslinked polymer, which gives solvent resistant patterns. This allows it to spincoat further monomers or polymers on the patterned structure so that fully plastic electronic circuits get accessible.

Up to now, only the pure monomers 1 and 2 were used. Mixtures of the monomers should be processable in the same way, giving further possibilities to modify the processing parameters and the stiffness of the resulting pattern. With the fully cured imprinted polymer 2, it was even possible to use it as a stamp itself, leading to nearly the same good imprints than from the silicon stamps.

Figure 1a

Figure 1b

Figure 1c

Figure 1d

Figure 1

SEM pictures of imprinted structures of polymer 2 on silicon. (a-c) thin films (originally 180 nm thickness) imprinted with a stamp with 5 µm lines (a) or 200 nm lines (b and c). d: thick film (1.1µm) imprinted with 200 nm stamp.
Typical SEM pictures of the imprinted semiconducting polymers are shown in figure 1a to d. Structures in the μm range (figure 1a) are easily imprinted into thin layers of the triarylamines (typically 180 nm thick). Starting from this result also thinner structures could be obtained. For thinner spacings, a stamp consisting of 600 nm channels divided by 200 nm bars was used. Figures 1b and c show lines imprinted with this 200 nm stamp, whereby the resolution was – so far – limited by the accessible stamps. Figures 1c and d shows at the same time limitations of our processing scheme, which needs further optimisation. For figure 1c a rectangular stamp was used, but the imprinted and finally hardened semiconducting polymer shows a smooth surface profile. Obviously there was some backflow of the imprinted viscous material after removing the stamp. The channels between the lines do, however, only slightly deviate from the width of 200 nm set by the stamp. Figure 1d shows 200 nm lines imprinted into a thick polymer layer of 1.1 μm thickness (Note: the grainy surface is a result of the gold deposition). In this case, in which the film thickness is higher than the surface profile of the stamp (about 200 nm), the material gets compressed as a whole during imprinting. Relaxation of the compressed film leads to deformed lines.

Generally the imprints at room temperature show the typical shape of PMMA imprinted above Tg. As this shape is typical for visco-elastic materials printed above the glass transition temperature [10], we can assume that the glass transition temperature of the oligomers after the first UV-flashing was below room temperature.

To demonstrate the semiconducting properties, films of monomer/photoinitiator solution were spincoated on ITO and cured under the same conditions as the imprinted oligomers were hardened. After photocuring the films were coated with Ca and Al through a hole-mask. Each resulting spot could be electronically investigated by measuring the Voltage/Current characteristic in a Faraday cage with a 237 High Voltage Source Measure Unit from KEITHLEY. The typical Voltage/Current characteristic can be seen in Figure 2. The figure shows a characteristic diode curve during changing from negative to positive voltages (left to right, lower curves). On reversing the voltage sweep (upper curves) some hysteresis results, probably due to trapped charges in the material. However on repeating the original sweep, nearly the same characteristic is obtained (between 0 and 4 volts) as for the first run. This experiment can be repeated many times.
Conclusion

In conclusion we were able to structure organic semiconducting material in a nm scale at room temperature in a NIL-like process. The process is very time saving compared to other methods, as temperature cycling is not necessary.

Experimental Part

Chemicals

Diphenylaminobenzaldehyde, triphenylamine, N,N-dimethylformamide, potassium-tert-butylate, and cyclohexanone were purchased from Fluka, methyltriphenylphosphoniumbromide and tritolylphosphoniumoxide from Aldrich and were used without further purification. THF was dried following standard procedures.

ITO covered float glass (R <= 100.0 Ω/cm²) was delivered by Schröder Spezialglastechnik and cleaned with acetone / water.

Figure 2

Current-voltage characteristic of cured films of monomer 2. Film thickness about 200 nm. ITO and Ca / Al were used as electrodes. Sweep rate 50 mV/s
Preparation of the Monomers

Monomer 1 (one vinyl group)

The preparation of monomer 1 had been done by Wittig reaction from Diphenylaminobenzaldehyde as previously described.\cite{11}

Monomer 2 (two vinyl groups)

The synthesis of monomer 2 consisted of a double Vilsmeyer formylation in a variation of the synthesis of Bu et al\cite{12} followed by a double Wittig reaction.

Preparation of phenyl-amino-dibenzaldehyde

In a 250 mL three necked flask with reflux cooler, dropping funnel and dry tube, 43.00 mmol (10.55 g) of triphenylamine were dissolved in 50 mL (47.4 g, 684.4 mmol) N,N-dimethylformamide. Under ice cooling 42 mL (70.35 g, 458.8 mmol) of phosphoroxychloride were carefully added during one hour. After that the solution was heated for 5.5 h to 95 °C. After cooling down, the reaction was quenched by carefully pouring it into ice-water. With 5 N sodiumhydroxide solution the reaction solution was neutralized, whereby a brown solid precipitated. The solid was sucked off over a fritte and dried in a vacuum oven at room temperature. The dry solid was purified by a column chromatography over a silica gel column (diameter: 8cm) with a petroleum ether : acetic acid ester 3 : 1 solution. Detection was made by TLC.

Yield: 8.35 g (64 %)

R_f (petroleum : acetic acid ester 3: 1) = 0.55

1H-NMR (CDCl$_3$)

δ: 9.86 (s, 2H); 7.76 (d, 4H); 7.40 (t, 2H); 7.26 (t, 1H); 7.16 (d, 4H); 7.16 (d, 2H)
Preparation of phenyl-bis-(4-vinylphenyl)-amine

To a solution of 15.3 mmol (5.48 g) of methyltriphenylphosphoniumbromide in 50 ml THF 15.6 mmol (1.76 g) potassium-tert-butyrate were added under cooling, whereby the solution changes to a yellow color. The reaction solution was stirred for further 30 minutes and then 5.11 mmol (1.54 g) of phenyl-amino-dibenzaldehyde were added. The reaction was stirred for 5 h at RT, whereby the color changed to orange. Monomer 2 was purified by column chromatography with petrol ether as eluent.

Yield: 1.47 g (97 %) colorless, slowly crystallizing needles of phenyl-bis-(4-vinyl-phenyl)-amine

1H-NMR (THF-d$_8$):

δ: 7.29 (d, 4H); 7.22 (t, 2H); 7.06 (d, 2H); 6.99 (m, 5H); 6.65 (dd, 2H); 5.63 (d, 2H); 5.10 (d, 2H)

13C-NMR (THF-d$_8$):

δ: 148.8; 148.6; 137.6; 133.6; 130.4; 128.2; 125.7; 125.0; 124.3; 112.6

melting-point 64.5 °C

Preparation of the Monomer-Solution

Solution for thick films (see figure 1d)

0.2 g of the monomer and 1.0 mg of the photoinitiator were dissolved in 0.5 mL cyclohexanone.

Solution for thin films (see figure 1a-c)

0.05 g of the monomer and 0.25 mg of the photoinitiator were dissolved in 0.5 mL cyclohexanone.
Apparatus and procedure
The readily prepared solutions were spun with a laurel technologies Corp. WS 40C-6NPP/Lite spincoater on standard silicon wafer substrates. For thick films the spinning time was 30 seconds at 3000 rpm, for thin films 30 seconds at 6000 rpm were used. The thickness of thick films was 1.1 µm, of thin films it was 180 nm. The film thickness was measured with a Dek-tatak³ST Surface Profiler from Veeco. The films were flashed with UV-Light at 350 nm wavelength and then were imprinted with a home made press. Stamps were supplied by VTT Microelectronics. After hardening with a second UV-light exposure, imprints were sputtered with gold, by an Edwards S 150B sputter coater. For SEM pictures Philips XL30 SFEG was used.

For electronic characterization, the same solutions were used, but ITO covered glass (d 1 mm, R <=100 Ω/cm²), supplied by Schröder Spezialglastechnik was used instead of silicon substrates. Films were exposed to UV-light and then coated first with Ca then Al with a Leybold Univex 300.
References

4.4 Nanostructured Polytriarylamines: Orientation Layers for Polyfluorene

M. Behl, R. Zentel, A. Zen, S. Lucht, D. Neher

Polymeric Materials Science & Engineering, 2004, 90, 297

4.4.1 Zusammenfassung der Publikation

4.4.2 Publikation

Nanostructured Polyarylamine: Orientation Layers for Polyfluorene

M. Behl, R. Zentel, A. Zen, S. Lucht, D. Neher

1Department of Chemistry, University of Mainz, D-55099 Mainz, Germany
2Department of Physics, University of Potsdam, D-14415 Potsdam, Germany

INTRODUCTION

Organic Light Emitting Diodes (OLED’s) are of great scientific and technical interest, due to their advantages of low driving voltages, high brightness and efficiency. As materials low molecular mass molecules or polymers can be used. But because of the more simple preparation of OLEDS based on polymer materials the polymeric approach seems to be advantageous. On the other side there is the demand to combine the advantages of the OLEDs with liquid crystal display (LCD) technology. Therefore OLEDs which exhibit polarized light are needed. For this reason the light emitting moieties have to be aligned. Several methods are known. A very promising approach is the alignment of liquid crystalline materials. A favorable class of materials are polyfluorenes as they are thermotropic liquid crystals and LEDs based on polyfluorenes have a large polarization ratio at a reasonable brightness. As alignment layers several substrates were used e. g. rubbed polyimide or photoaddressable alignment layers. A disadvantage of these layers is that they need to be doped with hole-transporting molecules for good hole transport through the alignment layer. This could be overcome by using poly(p-phenylenevinyle) PPV, which was rubbed after partial conversion. The generally accepted model for the rubbing process is, that during the rubbing with the fleece, polymer chains on the surface are partially oriented. These chains work as orientation layer for the LC polyfluorene.

We had the idea, that it is possible to structure the holeconductor itself in such a way, that it works as orientation layer for LC polyfluorene. As holeconductor we choose triarylamines, as they are known for their high charge carrier mobility and ease of preparation. Furthermore the triarylamine should be crosslinkable, therefore we choose 1. As polyfluorene we choose 2. With these substances it should be possible to build up an OLED, which emits polarized light. Here we report the successful orientation of the polyfluorene, which leads to a high anisotropy of fluorescence.
Scheme 1. Idea of a polarized OLED. A structured hole conductor (for example a patterned crosslinked triarylamine) works as orientation layer for a liquid crystalline emission layer (for example a polyfluorene)

EXPERIMENTAL

Instruments For spincoating a Convac ST146 spincoater was used. The UV light source consisted of a LOT Oriel mercury lamp with a LOT 68910 All Lamp Power Supply and an Omron H3CA shutter with a LOT Oriel 71445 Shutter power supply. Polarized photoluminescence spectra were recorded with a DILOR XY-spectrometer in fluorescence mode. The excitation wavelength was 370 nm and the light beam was incident to the polyfluorene film side. The spectra were recorded with the analyzer at 0° and 90°, parallel and perpendicular to alignment of the structured hole conductor layer, respectively. Spectra were corrected for polarization dependence but not for the wavelength-dependent sensitivity of the setup for the fluorescence detection.

Reagents The synthesis of the phenyl-bis-(4-vinyl-phenyl)-amine 1 has been already reported before\(^{17}\). For the PDMS stamps a silicone precursor and a crosslinker (Sylgard 184 from Dow Corning) was used. Precursor and crosslinker were mixed in a 10:1 weight ratio and poured over the master. As master the stamp for the NIL like printing was used. After evacuation the solution at RT the mixture was heated at 80 °C overnight.
4.4 Nanostructured Polytriarylamines: Orientation Layers for Polyfluorene

Procedures For both methods of patterning a solution of 0.1 g of 1 and 1.0 mg Lucirin TPO in 0.5 mL cyclohexanone was used. This solution was spincoated with a speed of 3000 rpm either on a silicon wafer or ITO glass. If the substrates were structured with hard chromium stamps, the procedure as previously published followed17. If the substrate were structured with soft PDMS stamps, the stamp was laid on the substrate and the sample was irradiated through it. The irradiation time was ten minutes. 10.0 mg of 2 was dissolved in 1 mL toluene and spincoated on the structured triarylamine with a speed of 1200 rpm. Afterwards the sample was annealed for 30 minutes at 100 °C in the glovebox.

RESULTS AND DISCUSSION

As substrates for structuring two kinds of substrates were used: either silicon wafer or ITO glass. As hole conductor the crosslinkable Triarylamine 1 was used. Furthermore two ways for structuring were applied: either the triarylamine was patterned with a hard silicon stamp in a NIL like method17, 18 or by embossing with a soft PDMS stamp. As stamp a line structure with 400 nm spacing was used. The monomer / photoinitiator solution was spincoated on the substrate and the stamp was gently pressed on the remaining film. Afterwards the film was cured with UV light for ten minutes through the stamp. Finally the stamp was removed. The hole process is shown in scheme 2.

- Spincasting of monomer/photoinitiator → Imprinting → UV curing → Resulting line pattern

Scheme 2. Imprinting of a film of monomer 1 with soft PDMS stamps

Both patterning processes have in common, that a thin residue film of triarylamine remains. While this film is usually unwanted for standard NIL and other patterning applications, this film is essential for LED applications as it prevents short circuits between emission layer and substrate. Because triarylamine 1 crosslinks during the polymerization, the resulting pattern is solvent resistant after the structuring process. On these structured hole conductor substrates the liquid crystalline polyfluorene was
spincoated from solution. Figure 2 shows patterned substrates before and after the spincoating of polyfluorene.

Figure 2. Optical microscope image of the triarylamine layer structured with the soft PDMS stamp. The pattern is a 400 nm line structure. The left part of the picture shows the structure before and the right part after spincoating of the LC polyfluorene, with the polyfluorene on top.

Afterwards the substrates were annealed at 100 °C in an oxygen free environment. During this annealing the orientation of the liquid crystalline polyfluorene takes place. After the annealing the polarized photoluminescence at an excitation wavelength of 370 nm was measured. Figure 3 shows the spectra a vertical sample with the filter in parallel (solid line) and in perpendicular position (dotted line). The polarization ratio at the maximum peak (450 nm) is approximately 24. Note, that the maximum degree of alignment varied from sample to sample and further experiments are needed to achieve reproducibly large polarization ratios.

Figure 3. Polarized photoluminescence of the aligned polyfluorene. The excitation wavelength was 370 nm. Spectra are shown for emission polarized parallel (solid
line) and perpendicular (dotted line) to the alignment direction. Note that the setup was not corrected for the wavelength dependence of the sensitivity of the detection.

CONCLUSION

We were able to structure trirarylamine on different substrates in a way that they work as orientation layer for liquid crystalline polyfluorene. Future work will focus on the fabrication and optimization of efficient OLEDs with a highly polarized emission.

ACKNOWLEDGEMENTS

Financial support from the VW-foundation is gratefully appreciated.
REFERENCES

4.5 Light induced creation of p-n junctions

M. Behl, R. Zentel, D.J. Broer

Advanced Materials, **2004**, eingereicht

4.5.1 Zusammenfassung der Publikation

4.5 Light induced creation of p-n junctions

4.5.2 Publikation

Light induced creation of p-n junctions

By Marc Behl, Rudolf Zentel* and Dick J. Broer*

[*]
Prof Dr. R. Zentel, M. Behl
Department of organic chemistry, University of Mainz
D-55099 Mainz, Germany
e-mail: zentel@uni-mainz.de

Prof. Dr. D. J. Broer
Philips Research Laboratorie,
NL-5656AA Eindhoven, Netherlands
e-mail: dick.broer@philips.com

In the last years much progress has been achieved in organic semiconducting materials for electronic applications like OLEDs, photovoltaics or FET’s[1-3]. For their operation it is necessary to structure the material and to create p-n junctions in various ways[4, 5]: For OLEDs a two layer structure is desired, for photovoltaics a bicontinuous nanophase separated structure from p- or n-conducting material and for plastic electronics an engineered pattern of p- and n-conducting areas to create diodes “at will”. Such structures can be made e.g. by multistep processes, in which one material (p- or n-conducting) is applied first, patterned and partly removed (if necessary) before the second material is applied. A one step process, by which p- and n-conducting materials are patterned simultaneously, would here be very advantageous. Nanophase separated blockcopolymers of p- and n-conducting monomers allow the one step creation of p-n junctions[6], however they cannot be engineered afterwards. A possibility to phase separate a binary mixture “at will” may due to the different reactivity of two monomers to polymerization in combination with a spatially controlled creation of radicals. Broer et al. could show that liquid crystals of different reactivity demix spatially during polymerization in a light gradient[7-11]. We propose here that
to apply this principle to semiconducting materials anticipating that we can form p-n junction in a spatially controlled way.

To test this hypothesis we synthesized monomers with hole or electron transport properties and different reactivity. As hole transport monomers we choose triphenylamines[12, 13]. As electron transport monomers we selected triazines, because of their good solubility and reasonable redox potential[14, 15]. For the spatial resolution during polymerization, the polymerizable groups of the monomers have to be different in their copolymerization parameters. This leads to the synthesis of three monomers 1-3. The preferably reacting monomers are the styrene-type like monomers 1 and 2 which form – well stabilized – benzyl radicals during polymerization. The presence of two vinyl groups, which lead to crosslinking, should further enhance the incorporation into the growing chain. The less reactive monomer we selected monomer 3 with a vinylester group. A flash illumination should allow it thus, to polymerize all monomers, but at very different rate. The monomers were synthesized according to scheme 1.

Scheme 1. Synthesis of the monomers
In order to proof the concept of spatial demixing during polymerization in a light gradient, it seemed reasonable to make two kinds of experiments. In a first experiment, a crosslinkable monomer should be polymerized together with an inert solvent. This experiment shows the tendency of the reactive monomer to diffuse into the illuminated areas. As inert solvent we choose polyethyleneglycol (PEG). In a second set of experiments, a mixture of the p-conducting and the n-conducting monomer should be polymerized.

In the first set of experiments, a 1:1 mixture of monomer 1 and PEG 1000 were photopolymerized through a line mask with 1:1 open/close periodicities ranging from 1 to 50 µm. The results of these experiments are presented in figure1a-b. Figure 1a shows a polarizing microscope image of the patterned lines. The illuminated lines are dark, and show no birefringence, while the non illuminated areas show the birefringence of pure crystalline PEG. This proves that a demixing (or dewetting) has happened during photopolymerization. Figure 1b shows the Raman microscope image of the sample with another pattern size measured at the characteristic line for triphenylamines. It can be clearly seen, that the crosslinkable triphenylamine accu-
mulates in the illuminated areas and nearly no triphenylamine is left in the unexposed areas.

Figure 1a Optical microscope image of lines of poly(1) (dark regions) and PEG1000 (birefringence, bright regions)

Figure 1b Raman microscope image showing lines of poly(1) with intense triphenylamine peaks

In the second set of experiments, the vinyl ester functionalized triphenylamine 3 and the crosslinkable triazine 2 were spincoated in a 1:1 mixture with 1 weight percent photoinitiator on the substrate and polymerized at 80 °C through the same line mask. The results from these experiments are shown in figure 2a-b

Figure 2a Optical microscope image of the resulting line pattern

Figure 2b AFM image of the resulting line pattern

Figure 2a shows the optical microscope image resulting from the patterned illumination. Figure 2b shows an AFM image from the same sample. Like in the microscope image, a line pattern in the same size of the line mask could be identified. From both results it can be concluded that monomer diffuses into the illuminated area. To proof which of the monomers diffuses preferentially, the samples have been further characterized by Raman microscopy as presented in figure 3 a-c.
In Raman spectroscopy we can distinguish between lines, that are common to both monomers (phenyl rings) and lines that are characteristic for just one of the components. While the signal at 1610 cm\(^{-1}\) (aromatic rings) is common for both monomers, the sample can be differentiated by the signal at 1175 cm\(^{-1}\) (characteristic for monomer 3) and by the signal at 1415 cm\(^{-1}\) (monomer 2). Figure 3a shows the spatial distribution of the signal at 1610 cm\(^{-1}\), and is therefore representative for the total film thickness. It shows that during polymerization material accumulates in the illuminated areas. This corresponds to the thickness profile of figure 2b. In figure 3b and 3c the spatial distribution of the signals from compound 2 and compound 3 can be seen. Both show an increase in the optical density in the illuminated areas. This effect is strong for the preferably polymerizing crosslinkable triazine and weak for the triphenylamine 2. To determine the local change in the concentration of both monomers, the thickness difference (optical path) has to be corrected. As a measure of the degree of demixing (local change of the ratio of monomer 3 and 2) the ratio of the Raman intensities at 1100-1300 cm\(^{-1}\) and 1350-1550 cm\(^{-1}\) is plotted in figure 3d. It reveals the opposite line structure, as there is much more p-conducting material (vinylester monomer 3) in the non irradiated areas left, than n-conducting bifunctional monomer 2. This implies that it is possible modulate the concentrations of p- and n-conducting materials by irradiation.

What we have shown is that in the case of a materials combination of widely divergent polarities, as was the case in the blend of monomer 1 and the polyethylene glycol controlled phase separation of an electronically active polymer could be established. The experiments with the blends of p- and n-type monomers 2 and 3 demonstrated that the concentrations of p- and n-type polymers can be modulated in a controlled way. Induced phase separation by selecting less interactive monomers, e.g. by optimizing on more opposing solubility parameters of each, should lead to spatially controlled phase separation and well controlled p-n junctions.
4.5 Light induced creation of p-n junctions

Figure 3a Signal at 1610 cm\(^{-1}\) = contribution by both compounds

Figure 3b Signal at 1415 cm\(^{-1}\) = monomer 2

Figure 3c Signal at 1175 cm\(^{-1}\) = monomer 3

Figure 3d Division of 1100-1300 cm\(^{-1}\) signal by 1350-1550 cm\(^{-1}\)
Ratio monomer 3 : monomer 2

ACKNOWLEDGEMENT

We want to thank Christiane de Witz and Arjen Mank for experimental support and Cees Bastiaansen for fruitful discussion.

EXPERIMENTAL

Instruments For spincoating a Convac ST146 spincoater was used. The UV light source consisted of a LOT Oriel mercury lamp with a LOT 68910 All Lamp Power Supply and an Omron H3CA shutter with a LOT Oriel 71445 Shutter power supply.

Synthesis Synthesis of 1 has already been described[16]. Preparation of 4: In a 100 ml round flask 1.43 g (7.27 mmol) of the tert-butylbenzoylchloride, 5.0 g (21.83 mmol) of 4-iodo-benzonitrile, 1.06 g (8.0 mmol) of aluminumchloride and 1.56 g (21.83 mmol) of ammoniumchloride were added and heated to 150 °C. After heating overnight, the reaction was quenched by adding ice and concentrated hydrochloric
4.5 Light induced creation of p-n junctions

acid. The residue was filtered off and washed with diluted hydrochloric acid and water. Afterwards the residue was recrystallized from acetic acid. Yield: 1.24 g (2.0 mmol, 28 %). \(^1\)H-NMR: \(\delta(CDCl_3): 8.62\) (d, 2H); 8.44 (d, 4H); 7.90 (d, 4H); 7.57 (d, 2H); 1.38 (s, 9H).

Preparation of 2: A 100 ml Schlenk flask was filled with 0.6 g (0.97 mmol of 4) and 15.0 mg (0.194 mmol) of Palladiumferrocenedichloromethane complex and was then oxygen freed. 20 ml of THF was added under Schlenk conditions and then cooled to – 70 °C. Then 6 ml of a 1 Mol / l Vinylmagnesiumbromide solution in THF was added drop wise. The reaction was stirred overnight whereby it warmed up to room temperature and was then quenched by adding 10 ml of a saturated ammonium chloride solution. Afterwards the reaction mixture was extracted three times with 150 ml chloroform totally and concentrated under reduced pressure. Finally the product was cleaned by column chromatography with a petroether chloroform mixture as eluent. Yield: 0.37 g (0.88 mmol, 91.0%).

\(^1\)H-NMR: \(\delta(CDCl_3): 8.71\) (d, 4H); 8.65 (d, 2H); 7.58 (d, 6H); 6.82 (dd, 2H, J=11.0 Hz; 17.3 Hz) 5.91 (d, 2H, 17.3 Hz); 5.38 (d, 1H, 11.0 Hz); 1.39 (s, 9H)

\(^13\)C-NMR: \(\delta(CDCl_3): 171.52; 171.07; 156.03; 141.43; 136.43; 135.75 133.60; 129.18; 128.79; 126.38; 125.57; 115.78; 35.08; 31.22\)

Preparation of 5: In a 250 ml three necked round flask with reflux condenser, thermometer and KPG-stirrer, 92 ml water, 13.80 ml benzene, 0.68 ml (1.48 mmol) aliquat 336, 10.78 g (10.14 mmol) sodium carbonate were added to 5.58 g (20.41 mmol) of diphenylbenzaldehyde. The mixture was vigorously stirred and 3.22 g (20.38 mmol) potassiumpermanganate were added stepwise. The solution was refluxed at 110 °C until the color disappeared, and then filtered hot from the brownstone. To the filtrate sodiumhydrogensulfit solution was added until the remaining brownstone was dissolved. Finally the filtrate was acidified with semi concentrated sulfuric acid and cooled to roomtemperature. The precipitate was filtered off and dried in vacuum.

Yield: 4.10 g (69.5 %) \(^1\)H-NMR: \(\delta(CDCl_3): 7.88\) (d, 2H); 7.32 (d, 2H); 7.29 (d, 2H); 7.12 (m, 6H); 6.97 (d, 2H)

Preparation of 3: In a 100 ml dried round flask, to 3.61 g (12.47 mmol) of 5 was given 0.20 g (mmol) mercuryacetate and 40 ml vinylacetate. 1.0 g 3Å molecular-sieves and 1.0 g 5Å molecularsieves were added together with one drop sulfuric acid and one spatula hydrochinon. The reaction was refluxed under nitrogen over night
and then quenched by adding sodiumacetate. The excess of vinylacetate was distilled off, the residue cleaned by column chromatography with petrolether : acetic acid ester 1:1. 2.13 g of 5 were yielded back. Yield: 0.96 g (24.4 %); Overall yield (59.9 %) \(^1\)H-NMR: δ (CDCl\(_3\)): 7.89 (d, 2H); 7.49 (dd, 1H, J= 13.97Hz; 6.43 Hz); 7.32 (d, 2H); 7.29 (d, 2H); 7.12 (m, 6H); 6.98 (d, 2H); 4.98 (d, 1H, J=13.97 Hz); 4.62 (d, 1H, J =6.43 Hz) \(^{13}\)C-NMR: δ (CDCl\(_3\)): 163.34; 152.59; 146.42; 141.58; 131.37; 129.63; 126.02; 124.73; 120.34; 119.58; 97.40

Mixtures For the first set of experiments 0.1 g 1 and 0.1 g PEG 1000 (Fluka) were dissolved with 1 weight-% Lucirin-TPO (Aldrich) in 2 mL cyclohexanone (mixture 1). For the second set of experiments 0.1 g 2 and 0.1 g 3 with 2 weight-% Lucirin-TPO were dissolved in 1 mL cyclohexanone (mixture 2).
REFERENCES

Wie in der Publikation „Light induced creation of p-n-junctions“ angegeben, wurde als Modellsystem eine Mischung aus dem vernetzbaren Triphenylamin und Polyethylenglycol unter einer Streifenmaske vernetzt. Dabei konnte ein bis dahin noch nicht gesehenes Entmiscungsphenomen beobachtet werden.

Wie in Abbildung 4.5.3.1 zu sehen, kommt es erwartungsgemäß zur Polymerisation des Triphenylamins in den belichteten Bereichen. Wie jedoch auch zu sehen ist, handelt es sich bei den dabei erhaltenen Strukturen nicht um durchgängige Linienstrukturen, sondern diese Linien separieren in kleine „Tröpfchen“.

Dass es sich bei diesen Tröpfchen definitiv um das Triphenylamin handelt, konnte durch Messungen am Ramanmikroskop geklärt werden wie sie in Abbildung 4.5.3.2 gezeigt ist. Die Detektion erfolgte dabei mit 1610 cm$^{-1}$. Dies entspricht der Absorption von Aromaten. Da im Polyethylenglykol keine aromatischen Komponenten enthalten sind, kann so der Rückschluss gezogen werden, dass die Absorption vom Triphenylamin herrührt.

Um die Proben weiter zu charakterisieren, wurden ihre Oberflächen mit einem AFM untersucht. Abbildung 4.5.3.3 zeigt die AFM-Untersuchung einer Probe aus Triphenylamin und PEG 1000. Die Probe ist dabei in einer Aufsicht und in einer perspektivischen Ansicht zu sehen. Weiterhin wurde ein Oberflächendiagramm angefertigt; die in der rechten Aufnahme eingezeichneten Linien entsprechen dabei den Schnittkanten.

Wie an der Aufnahme zu sehen ist, kommt es zu einer deutlichen Trennung des Triphenylamins vom Polyethylenglykol. Die Breite der Streifen in diesem Teil der Maske betrug ungefähr 50 µm. Anhand des leicht fleckigen Hintergrundes bei der 50 µm Skalierung ist jedoch erkennbar, dass die Trennung nicht vollständig war und Material im unbelichteten Bereich verblieben ist.

Abbildung 4.5.3.2: Vergleich zwischen bestrahltem Bereich und mit dem Ramanmikroskop detektiertem Struktur
Weiterhin ist zu sehen, dass die Linien aus Triphenylamin, welche durch die Streifenmaske vorgegeben wurden, annähernd gleiche Höhe haben. Darüber hinaus ist auch die Höhe der phasenseparierten Tröpfchen innerhalb einer Linie annähernd konstant. Von wenigen Ausreißern abgesehen variiert, diese um 280 nm. Die Breite der einzelnen Tröpfchen ergibt sich aus dem doppelten Abstand der Messpunkte und liegt ungefähr bei einer Breite von 12 µm.

Abbildung 4.5.3.3: AFM-Charakterisierung einer Probe aus Triphenylamin und PEG 1000

4.5 Light induced creation of p-n junctions

Abbildung 4.5.3.4 AFM-Charakterisierung einer Probe aus Triphenylamin und PEG 2000

Dieses Ergebnis kann sowohl mit Messungen genau parallel zwischen den bestrahlten Linien (rote Schnittlinie) mit 550 nm und diagonal zu den bestrahlten Linien (grüne Schnittlinie)

Bisher ist es noch nicht klar, wie die hier aufgeführten Ergebnisse zu deuten sind. Wie die Zahlen der bisher gefunden Tröpfchenhöhen jedoch eindrucksvoll zeigen, handelt es sich hier um einen gewaltigen Massentransport. Weiterhin ist die Regelmäßigkeit, mit der die Tröpfchen in Phasen separieren, bemerkenswert. Die hier aufgeführten Ergebnisse sind Gegenstand weiterer Untersuchungen, jedoch konnten diese aufgrund eines Umzuges des Philips Research Centers noch nicht abgeschlossen werden.
5 Zusammenfassung

Weiterhin wurden zwei neue Strukturierungsverfahren entwickelt. In dem ersten Verfahren wurden dabei Siliziumstempel benutzt, so dass es möglich war, Strukturen im Nanometerbereich zu generieren. Der gesamte Strukturierungsprozess konnte bei Raumtemperatur durchgeführt werden, was einen wesentlichen Zeitvorteil gegenüber NIL entspricht.

6 Literaturverzeichnis

